
Citation: Lenzi, E.K.; Zola, R.S.;

Rosseto, M.P.; Mendes, R.S.;

Ribeiro, H.V.; Silva, L.R.d.;

Evangelista, L.R. Results for

Nonlinear Diffusion Equations with

Stochastic Resetting. Entropy 2023, 25,

1647. https://doi.org/10.3390/

e25121647

Academic Editors: Ugur Tirnakli,

Christian Beck, Hans J. Herrmann,

Airton Deppman, Henrik Jeldtoft

Jensen, Evaldo M. F. Curado,

Fernando D. Nobre, Angelo Plastino,

Astero Provata and Andrea

Rapisarda

Received: 6 November 2023

Revised: 3 December 2023

Accepted: 8 December 2023

Published: 12 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Results for Nonlinear Diffusion Equations with
Stochastic Resetting
Ervin K. Lenzi 1,2,* , Rafael S. Zola 3 , Michely P. Rosseto 1 , Renio S. Mendes 4 , Haroldo V. Ribeiro 4 ,
Luciano R. da Silva 2,5 and Luiz R. Evangelista 4,6

1 Departamento de Física, Universidade Estadual de Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil;
michelyrosseto@gmail.com

2 National Institute of Science and Technology for Complex Systems, Centro Brasileiro de Pesquisas Físicas,
Rio de Janeiro 22290-180, RJ, Brazil; luciano@fisica.ufrn.br

3 Departamento de Física, Universidade Tecnológica Federal do Paraná, Apucarana 86812-460, PR, Brazil;
rzola1@kent.edu

4 Departamento de Física, Universidade Estadual de Maringá, Maringa 87020-900, PR, Brazil;
rsmendes@dfi.uem.br (R.S.M.); hvr@dfi.uem.br (H.V.R.); lre@dfi.uem.br (L.R.E.)

5 Departamento de Física, Universidade Federal do Rio Grande do Norte, Natal 59078-900, RN, Brazil
6 Istituto dei Sistemi Complessi (ISC–CNR), Via dei Taurini, 19, 00185 Rome, Italy
* Correspondence: eklenzi@uepg.br

Abstract: In this study, we investigate a nonlinear diffusion process in which particles stochastically
reset to their initial positions at a constant rate. The nonlinear diffusion process is modeled using the
porous media equation and its extensions, which are nonlinear diffusion equations. We use analytical
and numerical calculations to obtain and interpret the probability distribution of the position of the
particles and the mean square displacement. These results are further compared and shown to agree
with the results of numerical simulations. Our findings show that a system of this kind exhibits
non-Gaussian distributions, transient anomalous diffusion (subdiffusion and superdiffusion), and
stationary states that simultaneously depend on the nonlinearity and resetting rate.

Keywords: Tsallis entropy; q-exponentials; anomalous diffusion; Lévy distributions

1. Introduction

Stochastic processes are one of the most captivating occurrences in the natural world
and significantly impact various contexts. Diffusion completely depends on these processes,
determining the type of diffusion the system manifests. For example, Markovian processes
are typical of the Brownian motion characterized by a linear dependence on the mean
square displacement, i.e., 〈(∆x)2〉 ∼ t, and can be connected with the Gaussian distribution.
On the other hand, the non-Markovian processes can be connected to extensions of the
Brownian motion where the sub- or super-diffusion is present. In these cases, we have a
nonlinear time dependence on the mean-square displacement, e.g., 〈(∆x)2〉 ∼ tσ, where
σ < 1 and σ > 1 correspond to sub- and superdiffusion, respectively. Other behaviors for
the mean-square displacement are also possible, such as 〈(∆x)2〉 ∼ lnσ t, which characterize
an ultraslow diffusion. Behind each of these processes, we have a density of probability,
which is the solution of the differential equation related to the type of stochastic process
present in the system. The usual diffusion is connected to Markovian processes, which have
the Gaussian distribution as a solution. Several kinds of differential equations can emerge
in the context of non-Markovian processes. The porous media equation is one of them, as a
consequence of a Langevin equation with multiplicative noise [1,2] with implications in
different contexts [3,4]. It is given by

∂

∂t
ρ(x, t) = D

∂2

∂x2 ρν(x, t) , (1)
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where D is the diffusion coefficient and ρ(x, t) represents the probability distribution of
finding a particle around position x at time t. Equation (1) can be obtained by using differ-
ent approaches, such as the ones present in Refs. [1,5,6]. This equation has been successfully
applied in many situations such as heavy-ion collisions [7], climate modeling, particles
with repulsive power-law interactions [8], life sciences [9], and hydrological setting [10].
Further, it can be related to the Tsallis formalism [11] and connected to the thermostatistic
aspects [12], similar to the standard diffusion equation and the Boltzmann–Gibbs statistics.
These scenarios and others related to stochastic processes are part of the diffusion phe-
nomena, which can be found in different contexts and are essential mechanisms in nature.
The diffusion can often appear combined with different phenomena such as stochastic
resetting [13,14], a process in which particles are stochastically repositioned to their initial
positions at a constant rate (see, for example, Figure 1).
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Figure 1. This figure illustrates the stochastic resetting process. The red and blue lines represent
the stochastic motion of two particles, which after some time restart the motion (black points) with
some rate.

Examples of systems with stochastic reset include the production of proteins by ribo-
somes [15], visual working memory in humans [16], protein identification in DNA [17], and
animal foraging [18]. Motivated by this myriad of possible applications, several works have
systematically investigated the combination of diffusion with stochastic resetting [19–26].
Other phenomena that are often combined with diffusion are the reaction–diffusion pro-
cesses, which play an essential role in different contexts such as physics [4,27,28] and
biology [29,30]. Despite this increasing interest in studying diffusion with stochastic reset-
ting and reaction processes, much less attention has been paid to considering nonlinear
diffusion processes.

Here, we help to fill this gap by investigating a diffusive process governed by a
nonlinear diffusion equation with stochastic resetting and linear reaction processes, both
irreversible and reversible. We consider the diffusion governed by Equation (1), a nonlinear
equation whose solutions are distributions asymptotically characterized by a compact or a
long-tailed behavior. In the last case, we can relate them with the Lévy distributions [31,32],
characterized asymptotically by power laws. The results that emerge from this context
combine different processes, i.e., the nonlinear diffusion, which may exhibit compact or
long-tailed solutions, reaction terms, and stochastic resetting. It is also worth mentioning
that the nonlinear diffusion equation considered here can be connected to unusual char-
acteristics such as fractal and multifractal properties, e.g., present in a porous media. The
reaction terms can be used to simulate different situations. One of them is the case where
the substrate can immobilize the particles. Another can result in an intermittent motion,
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where the terms are related to the motion and pause while the diffusion proceeds [27].
We perform analytical and numerical analysis for this nonlinear diffusion process with
stochastic resetting and reaction terms. In particular, we found an analytical solution for
the stationary state when reaction terms are absent, in terms of the q-exponential, which
has a power-law behavior. The analytical solution for the stationary state is also obtained
when a reversible reaction process is considered. These solutions, given in terms of the
q-exponentials [33], are different from the standard cases discussed in Refs. [19,34]. This fea-
ture can be connected to the diffusion process, which is governed by a nonlinear diffusion
equation instead of the usual one and results in a correlated anomalous diffusion [35,36].

The remainder of this manuscript is organized as follows. Section 2 defines the diffu-
sion equation, presents the approach to finding its solution, and describes the probability
distribution of the positions of particles and the mean square displacement for stochastic
resetting for different scenarios. This section also considers the first passage-time distribu-
tion and reaction terms for the nonlinear diffusion process with resetting. Finally, Section 3
concludes this work with an overview of our main findings.

2. Nonlinear Diffusion Equation with Stochastic Resetting

Let us start our analysis by considering a system subjected to the following diffu-
sion equation:

∂

∂t
ρ(x, t) = D

∂2

∂x2 [ρ(x, t)]ν − r
[
ρ(x, t)− δ(x− x′)

]
, (2)

where ρ(x, t) represents the probability distribution of finding a particle around position
x at time t, r is the rate under which particles stochastically reset their positions to x′,
ν is a parameter associated with the properties of the media, and D is a constant cor-
responding to the usual diffusion coefficient. It is worth mentioning that we will also
consider some extensions of Equation (2) and implications for the reset process. The solu-
tion of this equation in the absence of the resetting term, that is, for r = 0, can be found
in terms of the q-exponential present in the Tsallis formalism [11], which is based on the
following entropy:

Sq =
k

q− 1

{
1−

∫
dx[ρ(x, t)]q

}
, (3)

where q represents a degree of nonextensivity and k is a constant. Equation (3) recovers the
Boltzmann–Gibbs entropy in the limit of q→ 1. In particular, it is possible to show that the
solution is given by

ρ(x, t) =
1

Φ(t)
expq

[
− k′x2

2(2− q)DΦ2(t)

]
, (4)

where q = 2− ν and the q-exponential is defined as follows:

expq[x] =

{
[1 + (1− q)x]

1
1−q , x ≥ 1/(q− 1)

0 , x < 1/(q− 1)
, (5)

and Φ(t) = [(1 + ν)k′t]
1

1+ν , with

k′ = 2νDπ


1

1−ν

[
Γ( 1

1−ν−
1
2 )

Γ( 1
1−ν )

]2
, ν < 1

1
ν−1

[
Γ( 1

ν−1−1)
Γ( 1

ν−1+
3
2 )

]2
, ν > 1

. (6)

The mean square displacement for this case is given by σ2
x(t) = 〈(x− 〈x〉)2〉 ∝ t2/(1+ν),

which implies that depending on the values of ν, sub, normal, or superdiffusion can be
obtained. Another interesting point about these solutions is their connection with the
Lévy distributions for q > 1 or ν < 1 as discussed in Refs. [31,32].
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Equation (2) may be obtained from a random walk approach for r 6= 0, similar to the
standard case [37,38]; however, with a nonlinear dependence to obtain the nonlinearity
present in the diffusive term. To proceed this way, we follow the approach of Ref. [39], yielding

ρ(x, t + τ) =
∫ ∞

−∞
e−rτΨ[x− x′, t; ρ(x− x′, t)]ρ(x− x′, t)Φ(x′)dx′

+ {1−Ψ[x, t; ρ(x, t)]}e−rτρ(x, t) +
(
1− e−rτ

){
ρ(x, t)−R[ρ(x, t)]

}
. (7)

By taking the limits τ → 0 and x′ → 0 as discussed in Ref. [39], it is possible to simplify
Equation (7) and obtain

∂

∂t
ρ(x, t) =

∂2

∂x2

{
Ψ[x, t; ρ(x, t)]ρ(x, t)

}
− rR[ρ(x, t)] , (8)

which for Ψ[x, t; ρ(x, t)] = D[ρ(x, t)]ν−1 and R[ρ(x, t)] = (ρ(x, t)− δ(x− x′)) recovers
Equation (2). In fact, replacing the previous expressions for Ψ[x, t; ρ(x, t)] andR[ρ(x, t)] in
Equation (8), we obtain the following:

∂

∂t
ρ(x, t) = D

∂2

∂x2 [ρ(x, t)]ν − r
[
ρ(x, t)− δ(x− x′)

]
. (9)

We notice that Ψ[x, t; ρ(x, t)] directly influences the behavior exhibited by the particles
during the diffusion process, which can lead us to normal or anomalous diffusion. It is
also possible to consider situations with different regimes of diffusion depending on the
expressions used for Ψ[x, t; ρ(x, t)]. Later, we examine a case characterized by two different
regimes, i.e., Ψ[x, t; ρ(x, t)] = D1 + Dν[ρ(x, t)]ν−1, where one of the processes is normal
and another is anomalous. Formulating the stochastic resetting in terms of a Langevin
equation is also possible using the procedure employed in Ref. [21]. To do this, we need
to consider the following equation ẋ =

√
Ψ[x, t; ρ(x, t)]ξ(t), where ξ(t) is a stochastic

variable, i.e., a Gaussian white noise [39] with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 ∝ δ(t− t′). In this
manner, Equation (2) (or Equation (8)) can be obtained from a random walk approach with
a nonlinear dependence on the probability density function connected to the dynamics of
the walkers or employing a stochastic equation with a nonlinear term that is coupled with
a nonlinear diffusion equation.

By performing some numerical calculations, it is possible to find the solution for
Equation (2) as shown in Figure 2a,b for ν > 1 and ν < 1 at three different moments in
time. To do this, the system was defined in the interval [−5000, 5000] and discretized in
increments of dx = 2× 10−2, with dt = 10−6, to numerically explore the evolution of
time and obtain the results exhibited in these figures. These values for dx and dt verify
the condition Ddt/

(
dx2) < 1/2 required for the stability of the solutions during the time

evolution of the initial condition to satisfy the boundary conditions [28,40].
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Figure 2. Profile of the distribution obtained from Equation (2) for (a) ν = 1.2 and (b) ν = 0.8 by
considering different values of time. For illustrative purposes, we consider D = 1, ρ(x, 0) = δ(x),
x′ = 0, and r = 20.
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Figure 3 exhibits the time-dependence of the mean square displacement for the cases
shown in Figure 2a,b. The system reaches a stationary state for long times as in the standard
case, i.e., for ν = 1, when the resetting is considered. We have an anomalous diffusion
for short times in both cases, as shown in Figure 3. We have a superdiffusion for ν < 1,
whereas the subdiffusion behavior is verified for ν > 1.

10
-3

10
-2

10
-1

10
-4

10
-3

10
-2

10
-1

σ2

x(t) ∼ t0.9

ν = 1.2

σ2 x
(t

)

t

ν = 0.8

σ2

x(t) ∼ t1.1

Figure 3. Time-dependence of the mean square displacement, i.e., σ2
x (t) = 〈(x − 〈x〉)2〉, obtained

from Equation (2) when ν = 0.8 (green line) and ν = 1.2 (black line). The red and blue lines were
incorporated to evidence the behavior of the mean square displacement for short times. Again, for
illustrative purposes, we consider D = 1, ρ(x, 0) = δ(x), x′ = 0, and r = 20.

The result shown in Figure 3 for the stationary state allows us to consider, in the
asymptotic limit of t→ ∞, the following equation:

D
∂2

∂x2 [ρst(x)]ν − r
[
ρst(x)− δ(x− x′)

]
= 0 , (10)

where ρst(x) = limt→∞ ρ(x, t). It is possible to verify that the solution of Equation (10) is
given by

ρst(x) =
1
Z expq

[
− β|x− x′|

]
, (11)

with Zβ = 2/(2− q), ν = 3− 2q, and

β =

[
r

2Dν

(
2

2− q

)3−2q
] 1

4−2q

. (12)

Equation (11), for the particular case q = 1 (or ν = 1), leads to the result obtained in Ref. [14]
for the normal case. Figure 4 illustrates the numerical result obtained from Equation (2) for
long times, i.e., in the stationary scenario, and the previous analytical result, obtained for
Equation (11). It reveals a strong agreement between the numerical and analytical results
when we examine two different values of the ν parameter: the analytical result depicted for
ν = 0.8, with a solid black line and ν = 1.2, with a solid green line, while the dotted red
line represents the numerical result. In both cases, we employ a stochastic resetting rate
of r = 20.



Entropy 2023, 25, 1647 6 of 14

-1.0 -0.5 0.0 0.5 1.0
0

1

2

3

 Numerical Result

ρ s
t
(x

)

x

ν = 1.2

ν = 0.8

Figure 4. Comparison of the trends of the analytical results (black and green solid lines), given by
Equation (11), with the numerical results (red dotted lines), obtained for Equation (2) when ν = 0.8
and ν = 1.2. As before, the calculations consider D = 1, ρ(x, 0) = δ(x), x′ = 0, and r = 20.

We may also consider the survival probability and the first passage time distribution
for the situation we are analyzing. To proceed further, we consider the following boundary
condition: ρ(0, t) = ρ(∞, t) = 0, which implies assuming the presence of an absorbent
surface at x = 0, and fix, as an initial condition, ρ(x, 0) = δ(x − x0). In this framework,
Equation (8) becomes

∂

∂t
ρ(x, t) = D

∂2

∂x2 ρν(x, t)− r
[
ρ(x, t)− S(t)δ(x− x′)

]
, (13)

where S(t) =
∫ ∞

0 dxρ(x, t) is the survival probability. The first passage time distribution
can be found by using Equation [41]

F(t) = − ∂

∂t

∫ ∞

0
dxρ(x, t) = − ∂

∂t
S(t) . (14)

Figures 5–7, for the boundary conditions ρ(0, t) = 0 and ρ(∞, t) = 0, depict some cases
with fixed values of the diffusion coefficient D = 1 and position x′ = x0, for ν = 1.2
and ρ(x, 0) = δ(x− x0).

0.0 0.5 1.0 1.5
0

3

6

t = 10-1
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   r = 1.0
   r = 2.0
   r = 5.0
   r = 10.0
 = 1.2, x0 = 0.2

(
x,

t)

x

t = 10-3

Figure 5. The probability distribution function obtained from Equation (13) when ν = 1.2
for the boundary conditions ρ(0, t) = 0 and ρ(∞, t) = 0. We consider, for simplicity,
D = 1, ρ(x, 0) = δ(x− x0), and x′ = x0.
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Figure 6. Time-dependence of the survival probability using Equation (13) for various values of the
resetting rate r, with ν = 1.2 for the boundary conditions ρ(0, t) = 0 and ρ(∞, t) = 0. We consider,
again, D = 1, ρ(x, 0) = δ(x− x0), and x′ = x0.
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Figure 7. The first passage time distribution obtained from Equation (14) for ν = 1.2 and the boundary
conditions ρ(0, t) = 0 and ρ(∞, t) = 0. Again, for simplicity, we consider D = 1, ρ(x, 0) = δ(x− x0),
and x′ = x0.

From Figure 5, we may conclude that the quantity of particles decreases with increasing
rate r, demonstrating that the particles can find the absorbent surface more easily for large
values of the stochastic resetting rate. A similar behavior is illustrated in Figure 6, where we
observe the changing dynamics of particle survival probability over time. An increase in
the rate parameter r corresponds to faster adsorption of the particles at the surface. Figure 7
presents a graph illustrating the first passage time distribution over time, with the curves
representing the analytical results obtained from Equation (14).

Another challenging scenario, which emerges when the system is subjected to the
resetting process, is represented by the presence of a subtract that immobilizes the particles
while the diffusion proceeds. To face this case, we can consider the following equation:

ρ(x, t + τ) =
∫ ∞

−∞
e−ατΨ[x− x′, t; ρ(x− x′, t)]ρ(x− x′, t)Φ(x′)dx′

+
{

1−Ψ[x, t; ρ(x, t)]
}

e−ατρ(x, t) +
(
1− e−ατ

){
ρ(x, t)−R[ρ(x, t)]

}
. (15)

From this equation, it is possible to obtain the following diffusion equation:
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∂

∂t
ρ(x, t) =

∂2

∂x2

{
Ψ[x, t; ρ(x, t)]ρ(x, t)

}
− r
[
ρ(x, t)− e−αtδ(x− x′)

]
− αρ(x, t) , (16)

in which Ψ[x, t; ρ(x, t)] = D[ρ(x, t)]ν−1 andR[ρ(x, t)] = ρ(x, t) + (r/α)
[
ρ(x, t) −e−αtδ(x−

x′)
]
. This equation differs from Equation (2) by the presence of a reaction term that

immobilizes particles with the rate α. Note that the resetting term considers the exponential
e−αt multiplied by the delta function. This factor corresponds to the time behavior of the
survival probability in this case. In the absence of the resetting term, it is possible to find
the solution in terms of the q-exponential as in the previous case, and it is given by

ρ(x, t) = e−αt 1
Φα(t)

expq

[
− k′x2

2(2− q)DΦ2
α(t)

]
, (17)

with

Φα(t) =
{

1 + ν

(1− ν)α

[
e(1−ν)αt − 1

]} 1
1+ν

. (18)

In the case of an intermittent motion, we have to consider the following time behavior
for S1(t) =

(
α2/αt

)(
1− α2e−αtt/αt

)
, where αt = α1 + α2. In this scenario, the process of

resetting and motion is governed by the constants α1 and α2, and the equations are given by

∂

∂t
ρ1(x, t) = D

∂2

∂x2 ρν
1(x, t)− r

[
ρ1(x, t)− S1(t)δ(x− x′)

]
− α1ρ1(x, t) + α2ρ2(x, t) (19)

and
∂

∂t
ρ2(x, t) = α1ρ1(x, t)− α2ρ2(x, t) . (20)

From an analytical point of view, it is possible to find the solution of the linear case, i.e.,
ν = 1. It is

ρ1(x, t) = ρ0(x, t) +
∞

∑
n=1

(−α1)
n
∫ ∞

−∞
dxn

∫ t

0
dtnG2(x− xn, t− tn)

×
∫ ∞

−∞
dxn−1

∫ tn

0
dtn−1G2(xn − xn−1, tn − tn−1) · · ·

×
∫ ∞

−∞
dx1

∫ t2

0
dt1G2(x2 − x1, t2 − t1)ρ0(x1, t1) (21)

and

ρ2(x, t) = α1

∫ t

0
dt′e−α2(t−t′)ρ1(x, t′) , (22)

where

ρ0(x, t) = G1(x, t) + r
∫ t

0
dt′S1(t′)G1(x, t− t′) , (23)

G2(x, t) = G1(x, t) +
∫ t

0
dt′eα2t′G1(x, t− t′) , (24)

and

G1(x, t) = e−rt−x2/(4Dt)/
√

4πDt . (25)

Figures 8 and 9 illustrate the behavior of the mean square displacement and the distributions
obtained from Equations (19) and (20) for different values of ν. For Equations (19) and (20),
it is also possible to find the stationary solution, i.e., the one in the limit t→ ∞. We consider
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that in this limit, α1ρ1(x, t) is nearly equivalent to α2ρ2(x, t), and thus we solve the equation

D
∂2

∂x2

[
ρ1(2),st(x)

]ν
− r
[
ρ1(2),st(x)− S1(2),stδ(x− x′)

]
= 0 , (26)

where ρ1(2),st(x) = limt→∞ ρ1(2)(x, t) and S1(2),st = limt→∞ S1(2)(t). It is possible to verify
that the solution of Equation (26) is given by

ρ1(2),st(x) =
1
Z1(2)

expq

[
− β1|x− x′|

]
, (27)

with Z1(2)β1(2)S1(2),st = 2/(2− q), ν = 3− 2q, and

β1(2) =

 r

2DνS2−2q
1(2),st

(
2

2− q

)3−2q
 1

4−2q

. (28)
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Figure 8. Profiles of the probability distributions obtained from Equations (19) and (20), when ν = 1.2.
(a) exhibits the time-dependence of the mean square displacement for the distributions ρ1(x, t) and
ρ2(x, t); (b,c) show the spatial profiles of ρ1(x, t) and ρ2(x, t). The curves were drawn for D = 1,
r = 20, ρ1(x, 0) = δ(x), ρ2(x, 0) = 0, and α1 = α2 = 5, for illustrative purposes.



Entropy 2023, 25, 1647 10 of 14

-1.0 -0.5 0.0 0.5 1.0
0

1

2

-0.8 -0.4 0.0 0.4 0.8
0

3

6

9

12

t = 

(b)

 1
(x

,t)

x

t = 10-3

8

0.0 0.5 1.0 1.5 2.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

2
x(t)

2 x
(
t
)

t

(a) 2
x(t)

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(c)

 2
(x

,t)

x

t = 8

 1
(x

,t)

x

Figure 9. The same as in Figure 8 for ν = 0.8.

Figures 10 and 11 exhibit the stationary solution for ρ1(x, t) and ρ2(x, t) from the
numerical and the analytical point of view.
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Figure 10. Comparison of the analytical results (black and green solid lines), given by Equation (27),
ρ2,st(x) = (α1/α2)ρ1,st(x), with the numerical results (red dotted lines) obtained from Equation (2) for
ν = 1.2. The curves were drawn for D = 1, r = 10, ρ1(x, 0) = δ(x), ρ2(x, 0) = 0, α1 = 2, and α2 = 5.
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Figure 11. The same as in Figure 10 for the case ν = 0.8.

Let us reconsider the random walk approach for r 6= 0, i.e., Equation (7), given by

ρ(x, t + τ) =
∫ ∞

−∞
e−rτΨ[x− x′, t; ρ(x− x′, t)]ρ(x− x′, t)Φ(x′)dx′

+ {1−Ψ[x, t; ρ(x, t)]}e−rτρ(x, t) +
(
1− e−rτ

){
ρ(x, t)−R[ρ(x, t)]

}
, (29)

which for Ψ[x, t; ρ(x, t)] = D1 + Dν[ρ(x, t)]ν−1 implies that the diffusion is governed by the
following equation

∂

∂t
ρ(x, t) = D1

∂2

∂x2 ρ(x, t) + Dν
∂2

∂x2 [ρ(x, t)]ν − rR[ρ(x, t)] , (30)

withR[ρ(x, t)] = ρ(x, t)− δ(x− x′) in connection with the stochastic resetting. Equation (30)
has two different diffusive terms, which allows us to obtain two different regimes, where
one of the processes is normal and the other is anomalous. Figure 12 illustrates the behavior
of the mean square displacement and stationary distributions obtained from Equation (30)
for different values of the diffusion coefficients for ν = 1.2. The first regime, which is shown
in Figure 12 for the mean square displacement, is anomalous, and the second is normal
before reaching the stationary state.
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Figure 12. Time-dependence of the mean square displacement obtained from Equation (30) for
different values of diffusion coefficients. The inset corresponds to the stationary distribution for
different diffusion coefficients. We consider, for illustrative purposes, ν = 1.2, x′ = 0, and the initial
condition ρ(x, 0) = δ(x), for r = 0.5.



Entropy 2023, 25, 1647 12 of 14

3. Discussion and Conclusions

We have investigated the diffusion process governed by a nonlinear diffusion equation
when stochastic resetting and linear reaction terms are present. The nonlinear diffusion
equation analyzed is the porous media equation with the diffusive part characterized by a
single nonlinear term or a combination of different terms, resulting in different diffusion
regimes. One of the solutions of Equation (2), in the absence of stochastic resetting and
reaction terms, is given in terms of the q-Gaussian, as discussed in Section 2. It is different
from the normal one expressed in terms of the Gaussian distribution as a consequence of
the stochastic processes related to the motion of the particles [1]. It presents an anomalous
behavior evidenced by the time dependence of the mean square displacement, which can be
connected with sub- and superdiffusion. Under the influence of stochastic resetting, these
processes exhibit a stationary state that differs from the expected exponential, characterized
by a power-law behavior, as illustrated in Figure 4. This feature is a consequence of the
nature of the diffusion process promoted by the nonlinear term, which can be connected to
the correlated anomalous diffusion [35,36]. These general results extend the ones obtained in
Refs. [19,34]. Subsequently, we analyzed the reaction process in this context by considering an
irreversible and reversible scenario. The first case can be related to a substrate that immobilizes
the particles while diffusion proceeds. The stationary solution is absent in a different way
from the other scenarios. The second case can be considered an intermittent process between
the resting and the motion with some rates. For this case, we also obtained a stationary
solution in terms of the q-exponential, evidencing the influence of the nature of the diffusion
on the stochastic resetting. The diffusion process represented by Equation (1) is described
by power-law distributions, which promote a different behavior from the normal one for the
stochastic resetting and, consequently, a stationary solution expressed in terms of a power-law.

We also analyzed a situation characterized by different diffusion regimes, such that the
first regime is slower than the normal one, while the second is faster before the stationary
state is reached. We verified that these changes in the diffusion equation directly influence
the resetting process, leading the system to exhibit anomalous behavior. These features also
open the possibility of considering mixing between different cases, such as the fractional
diffusion equations [42–44] and nonlinear diffusion equations, which results in fractional
nonlinear diffusion equations [45]. Combining different equations will produce a wide class
of behaviors to describe a variety of scenarios. Finally, we hope that the results found here
can be useful in discussing the processes related to the nonlinear diffusion equation when the
stochastic process is present.
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