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a b s t r a c t

The reaction process occurring on a solid surface where active sites are present is investi-
gated. The phenomenon is described by a linear kinetic equation capable of accounting for
memory effects in the adsorption–desorption and a first order reaction process. In order to
broaden the formulation of the problem, the surface is in contact with a system defined in
a half space where the dynamics is governed by a fractional diffusion equation, meaning,
in principle, that the approach can be applied to complex systems such as biological fluids.
Our results prove that the anomalous behavior has great importance on the reaction and,
consequently, on the densities rates of particles at the surface and on the distribution of
particles in the bulk. The results are particularly relevant for heterogeneous catalysis.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The limiting surfaces in a sample give rise to distinct chemical reactivity from the bulk. Particles from the bulk may be
adsorbed to the surface by either two mechanisms, physisorption, where the particles are attracted to the surfaces through
van derWalls forces, or chemisorption, where covalent bonds at active sites adsorb them. Frequently, more than one chem-
ical species are present in the system and chemical reactions on solid substrates may occur, being subject of studies for
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over a century [1]. In fact, this phenomena is intimately related to several technologies such as for catalysts for producing
fuel [2], in biochemical sensors [3], electro-optical [4] and solar energy devices [5] and so on. With catalysts support, there
are some kinds of surface reactions mechanisms [6]: the Langmuir–Hinshelwood, where two different molecules, A and B,
are adsorbed, bond together and then the combination A−B is desorbed; the Rideal–Eleymechanism, where A, for example,
is adsorbed by the surface. Then, B encounters A, react, and A− B later is desorbed. The Precursor method assumes that one
molecule is adsorbed (A). The second molecule latter collides with the surface and forms a precursor, which latter collides
with A, react, forming A − B and desorbs [6]. Another mechanism is the so-called Mars–van Krevelen, which is also very
important and widely used in heterogeneously catalyzed oxidation reactions [7–13]. In the Mars–van Krevelen mechanism,
the surface itself is a very important part of the reaction. One of the reactants forms a chemical bond with the surface. This
catalytic surface layer then reacts with the other reactant from the gas phase and then desorbs. It was proposed as a first
order process with respect to the reactant A and the fraction of sites covered by oxygen. In this oxidation reaction, only
certain lattice ions O (oxygen) at the surface are involved. In addition, the rate of surface reoxidation, i.e., O2 adsorption,
is proportional to PnO2

(pressure) and to the concentration of active sites not covered by oxygen. More details about this
mechanism can be found in Ref. [7].

In the above mentioned reactions, the reacting species are in different phases, which is the case of heterogeneous catal-
ysis [14]. Different from the homogeneous catalysis, the heterogeneous case has the reacting species embedded in the solid
surfacewhile the reactant is, for example, dissolved in a liquid. Therefore, the reaction rate depends crucially on the diffusion
of the species involved [15]. Diffusion can be found in several situations such as drug dissolution [16] or delivery [17], trans-
port in biological films [18], cytoplasmic crowding in living cells [19], irregular catalyst structures on diffusion and reaction,
diffusion of proteins in sheared lipidmembranes [20]. The diffusion can be usual, i.e., characterized byMarkovian processes,
or anomalous where non-Markovian processes govern the system. In this context, an important point is to understand the
mechanisms behind these phenomena and how the presence of memory effects [21,22], long-range interactions [23] and
the characteristics of the media (e.g., fractal structure [24–26]) may contribute to the presence of a usual or anomalous dif-
fusion. The surface [27], i.e., the region where the boundary conditions are defined, also plays an important role in diffusion
and in others processes such as adsorption and/or desorption [28,29] and catalysis [30,31].

In this article, our goal is to investigate a system with bulk anomalous diffusion in contact with a surface where ad-
sorption–desorption and chemical reactions happen.We consider that the dynamics of particles in the bulk is governed by a
fractional diffusion equation, which has been successfully applied in several physical situations [32,33].We further consider
that the processes occurring on the surface are described by linear kinetic equations. These kinetic equations are coupled in
order to cover reversible reaction processes. This analysis is performed in Section 2 and in Section 3 the discussions and con-
clusions are presented. The analysis carried out here may be relevant for several systems of interest (such as heterogeneous
catalysis) where surface reaction occur when the substrate is in contact with a media supplying mass to these reactions by
means of an anomalous mechanism.

2. Mathematical model and discussions

Let us start our analysis by considering that the particle dynamics in the bulk is governed by the following fractional
diffusion equation

∂

∂t
ρ(x, t) = K0D

1−α
t


∂2

∂x2
ρ(x, t)


(1)

where ρ(x, t) is the density of particles, K is the diffusion coefficient, and the fractional time derivative is the Riemann–
Liouville one, defined as [34],

0D
α
t [ρ(x, t)] =

1
Γ (n − α)

dn

dtn

 t

0
dt ′

ρ(x, t ′)
(t − t ′)α−n+1

(2)

with n − 1 < α < n, where α is a real number and n integer. For the processes which may occur on the surface such as
adsorption, desorption, and chemical reactions, we assume that they satisfy the following kinetic equations

τ
d
dt

Γa(t) = κτρ(0, t) −

 t

0
dt ′ka(t − t ′)Γa(t ′) +

 t

0
dt ′kb→a(t − t ′)Γb(t ′), (3)

τ
d
dt

Γb(t) =

 t

0
dt ′ka→b(t − t ′)Γa(t ′) −

 t

0
dt ′kb(t − t ′)Γb(t ′). (4)

In Eqs. (3) and (4), Γa(b)(t) is the surface density, κ , ka(b)(t), and ka→b(b→a)(t) are the parameters connected to the processes
on the surface. In particular, we canwrite a characteristic time τκ =


K/κ2

2/(2−α) which governs the diffusion and adsorp-
tion near the surface. Eq. (3) relates the rate of adsorption of species a with the amount in the bulk, minus the amount of a
desorbed plus whatever quantity is reversibly reacted from b to a. Eq. (4) relates the rate of adsorption of species bwith the
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amount of a that reacts to form b minus the amount of b desorbed. Typical situations governed by first order kinetic equa-
tions can be found in several chemical contexts [35] and, in particular, in heavy metal sorption [36]. In addition, depending
on the choice of ka(t) and kb→a(t), Eq. (3) may be connected, in the steady-state, to the Henry isotherm [37].

In order to solve these equations, we initially consider them subjected to the condition ρ(x, 0) = Φ(x), with


∞

0 dxΦ(x)
= 1, and Γa(0) = Γb(0) = 0. We also consider that ρ(∞, t) = 0 and

Γa(t) + Γb(t) +


∞

0
ρ(x, t)dx = constant, (5)

which accounts for the conservation of the number of particles present in the system. The boundary conditions may be
written as

K0D
1−α
t


∂

∂x
ρ(x, t)

 
x=0

=
d
dt

Γt(t), (6)

where Γt(t) = Γa(t)+Γb(t). Eq. (5) may also be extended to cover other scenarios in which the conservation of the number
of particles is not satisfied, such as the situation worked out in Ref. [38]. In this case, suitable changes in Eq. (6) are required
to incorporate this scenario to the approach.

By using the Laplace transform and the Green function approach, the solution of Eq. (1) by taking Eq. (5) into account can
be written as

ρ(x′, s) = −


∞

0
G(x, x′

; s)Φ(x)dx′
+ ρ(0, s)e−

√
sα/Kx′ , (7)

with the Green function given by

G(x, x′
; s) = −

1
2 s

√
K/sα


e−

√
sα/K|x−x′|

− e−
√
sα/K|x+x′|


. (8)

The last term of Eq. (7) represents the effect of the surface on the bulk, i.e., how the processes which occur on the surface
canmodify the evolution of the system’s initial condition. For the present case, the surface terms are connected to processes
represented by Eqs. (3) and (4). In particular, to simulate a reversible kinetic process, e.g., a chemical reaction A � B, we
have that kb→a(t) = kb(t) and kb→a(t) = ka(t). Thus, after performing some calculations, it is possible to show that

ρ(0, s) =
κ

κ + s
√

K/sα


∞

0
Φ(x)e−

√
sα/Kxdx, (9)

and that the concentrations of the species a and b on the surface are given by

Γa(s) =
κ

κ + s
√

K/sα
(sτ + kb(s)) Θ(s)
sτ + ka(s) + kb(s)

, (10)

Γb(s) =
κ

κ + s
√

K/sα
ka(s)Θ(s)

sτ + ka(s) + kb(s)
, (11)

with

Θ(s) =
1
s


∞

0
Φ(x)e−

√
sα/K xdx. (12)

These equations were obtained from Eqs. (7) and (5) by using Eqs. (3) and (4) in the Laplace space. The boundary and initial
conditions for ρ(x, t), Γa(t) and Γb(t) were also used.

Notice the presence of a stationary state when t → ∞ (s → 0), if ka(s) → ka = constant and kb(s) → kb = constant,
which results in

Γa(t) ∼
kb

ka + kb
and (13)

Γb(t) ∼
ka

ka + kb
. (14)

Eqs. (5), (13) and (14) imply that, after some time, the substance, initially present in the bulk, is totally adsorbed by the
surface where the reversible reaction process is occurring and is not desorbed to the bulk due to the type of the kinetic
process on the surface. Another interesting point about this case, by analyzing Eq. (9), is that this choice of kinetic process
on the surface has no influence on the spreading of the species into the bulk. The influence of the surface on the bulk is
manifested by κ , the adsorption rate.
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Fig. 1. This figure illustrates the behavior of Eqs. (15) and (16) for α = 1 and α = 1/2. We use, for simplicity, ka = 2, kb = 1, τ = 1, and τκ = 1 in
arbitrary unities.

In addition, by applying the inverse Laplace transform to Eqs. (10) and (11), for ka(s) = ka = constant and kb(s) = kb =

constant, we obtain

Γa(t) + Γb(t) =
κ

√
K

 t

0

dt ′
√

(t − t ′)α
E1−α/2,1−α/2


κ

√
K

(t − t ′)1−α/2

h(t ′), (15)

Γb(t) =

 t

0
dt ′∆(t − t ′)h(t ′), (16)

with
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ka
τ
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 t

0

κ
√
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κ

√
K

t ′1−α/2

eka+bt ′/τdt ′ (17)

and

h(t ′) =


∞

0
dxΦ(x)H1,0

1,1


x′

√
Kt ′α

(1,
α
2 )

(0,1)


, (18)

where ka+b = ka + kb, Eβ,α (x) is a generalized Mittag-Leffler function [34] and Hm,n
p,q


x |

(ap,Ap)
(bqBq)


is the Fox H function [39].

The presence of these previous functions is connected to the anomalous spreading of the system due to the fractional time
derivative in Eq. (1).

Fig. 1 shows the behavior of Γa(t) and Γb(t) for α = 1 and α ≠ 1 in order to illustrate the influence of the fractional
coefficient and, thereafter, the anomalous behavior, on the solutions of the kinetic equations. Fig. 3 shows the time evolution
of the bulk distribution for the same cases reported in Fig. 1 for three different times. Clearly, the anomalous nature has great
influence in both, the surface and bulk densities, as it is evidenced from Figs. 1 and 2.

Interesting cases are obtained when the memory effect is introduced in Eqs. (3) and (4) due to a time dependence on
ka(t) and/or kb(t), which implies that ka(s) and/or kb(s), are not constants as in the previous case. As a particular case, for
ka(s) = ka/(1+sτa) (ka(t) = ka/τaet/τa ) [40] and for kb(s) = kb = constant (kb(t) = kbδ(t)), the behavior ofΓa(t) andΓb(t),
obtained from the kinetic equations, presents a fewoscillations,which can be interpreted as repeated adsorption–desorption
phenomena often found in the physisorption process [40], as illustrated in Fig. 3.

Now, let us consider the most general case, where kb→a(t) ≠ kb(t) and kb→a(t) ≠ ka(t), with kakb − kb→aka→b > 0. We
obtain that

ρ(0, s) =
κ {[sτ + ka(s)] [sτ + kb(s)] − kb→a(s)ka→b(s)} Θ(s)

κ [sτ + kb→a(s) + kb(s)] +


K
sα {[sτ + ka(s)] [sτ + kb(s)] − kb→a(s)ka→b(s)}

(19)
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Fig. 2. Behavior of Eq. (7) for α = 1 and α = 1/2 with τκ = 1 in arbitrary unities.

Fig. 3. This figure illustrates the behavior of Eqs. (15) and (16) for α = 1 when the memory effect is incorporated in the kinetic equations. For simplicity,
we also consider ka = 2, kb = 1, τ = 1, τa = 1, and τκ = 1 in arbitrary unities.

with

Γa(s) =
κ [sτ + kb(s)]Θ(s)

κ [sτ + kb→a(s) + kb(s)] +
√

K/sα {[sτ + ka(s)] [sτ + kb(s)] − kb→a(s)ka→b(s)}
, (20)

Γb(s) =
κka(s)Θ(s)

κ [sτ + kb→a(s) + kb(s)] +
√

K/sα {[sτ + ka(s)] [sτ + kb(s)] − kb→a(s)ka→b(s)}
. (21)
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Fig. 4. This figure illustrates the behavior of Eqs. (10) and (11) for α = 1. For simplicity, we also consider ka = 2, kb = kb→a = ka→b = 1, τ = 1, and
τκ = 1 in arbitrary unities.

Notice that, in this case, the processes occurring on the surface have a direct influence on the diffusive process of the system
in the bulk, i.e., the quantities ka, kb, kb→a, and ka→b in Eq. (19) represent the contribution given by the surface in Eq. (7).
Another interesting feature of this case is found in the asymptotic limit of Eqs. (20) and (21), for ka, kb, kb→a, and ka→b
constants. In this case,

Γa(t) ∼
κkb

kakb − kb→aka→b

1
√

Ktα


∞

0
dxΦ(x)H1,0

1,1


x

√
Katα

(1−
α
2 , α

2 )

(0,1)


, (22)

Γb(s) ∼
κka

kakb − kb→aka→b

1
√

Ktα


∞

0
dxΦ(x)H1,0

1,1


x

√
Katα

(1−
α
2 , α

2 )

(0,1)


. (23)

These equations show that, after some time, the concentration on the surface begins to saturate and the desorption process
starts. The substance present in the bulk is initially adsorbed by the surface where the kinetic processes governed by Eqs.
(3) and (4) occur and, after some time, is desorbed back to the bulk. This behavior is illustrated in Figs. 4 and 5 which, for
small times, show that the system has an accumulation of particles on the surface and, after some time, it spreads out back
to the bulk. This case is specially important in connection to heterogeneous catalysis, in the process mentioned before such
as the Langmuir–Hinshelwood mechanism, but with memory effects and anomalous diffusion included, which generalizes
the problem.

3. Conclusions

We have investigated the solutions of a fractional diffusion equation in connection with kinetic processes present
on a surface in contact with the bulk system under consideration. The evolution of the bulk equation and the
adsorption–desorption, aswell as the chemical reactions that occur on the surface, are coupled bymeans of kinetic equations
incorporatingmemory effects. We firstly considered the case for which kb→a(t) = kb(t) and kb→a(t) = ka(t), which implies
a first order reversible kinetic process, i.e., A � B. The results show that the particles initially present in the bulk, after
some time, are adsorbed by the surface, being trapped in the kinetic process. Another case studied was the one for which
ka ≠ ka→b and kb ≠ kb→a. It shows a different behavior for long times. The surface, after some time, starts a desorption
process which is asymptotically governed by 1/

√
tα . Our approach yields results for the densities of particles on the surface

and in the bulk, when memory effects happen in the process of adsorption–desorption and chemical reaction. In particular,
we analyze the importance of the diffusion in the bulk when themedia presents an anomalous behavior, proving it has great
influence on the reaction and consequently, on the densities rates.
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Fig. 5. This figure illustrates the behavior of Eq. (7) for different times for α = 1 when kb→a(t) ≠ kb(t) and kb→a(t) ≠ ka(t). For simplicity, we also
consider ka = 2, kb = kb→a = ka→b = 1, τκ = 1, and τ = 1 in arbitrary unities. Note that for t = 1 the particles are very close to the surface where the
kinetic processes are occurring. For t = 10 the particles leave the surface by a desorption process and spread out.
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