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Abstract

We report on a quantitative analysis of relationships between the number of homicides, population size and ten other
urban metrics. By using data from Brazilian cities, we show that well-defined average scaling laws with the population size
emerge when investigating the relations between population and number of homicides as well as population and urban
metrics. We also show that the fluctuations around the scaling laws are log-normally distributed, which enabled us to model
these scaling laws by a stochastic-like equation driven by a multiplicative and log-normally distributed noise. Because of the
scaling laws, we argue that it is better to employ logarithms in order to describe the number of homicides in function of the
urban metrics via regression analysis. In addition to the regression analysis, we propose an approach to correlate crime and
urban metrics via the evaluation of the distance between the actual value of the number of homicides (as well as the value
of the urban metrics) and the value that is expected by the scaling law with the population size. This approach has proved
to be robust and useful for unveiling relationships/behaviors that were not properly carried out by the regression analysis,
such as i) the non-explanatory potential of the elderly population when the number of homicides is much above or much
below the scaling law, ii) the fact that unemployment has explanatory potential only when the number of homicides is
considerably larger than the expected by the power law, and iii) a gender difference in number of homicides, where cities
with female population below the scaling law are characterized by a number of homicides above the power law.
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Introduction

The study of social complex systems has been the focus of
intense research in the last decades [1–3]. Elections [4,5],
population growth [6,7], economy [8–10], and language [11–13]
are just a few examples of social activities that have been recently
investigated. Such investigations are expected to provide a better
understanding of how our society is organized and also to point
out better strategies for resource management, service allocation,
and political strategies. In this social context, crime is one of the
most worrying activity for our society and to understand and to
prevent crime acts is a huge challenge [14–16]. Moreover, since
nowadays more than a half of the human population lives in cities
[17,18], it is crucial to analyze possible connections between
criminality and urban metrics.

In fact, there exist several works that point out relationships
between the number of crime acts and urban indicators such as
income, unemployment and inequality [19–23]. Most of these
papers employ regression analysis, where the dependent variable is
the crime indicator (usually the number of a particular crime act)
and the independent variables are urban indicators [24–33].
However, most of these studies does not take into account the
functional form of the relationships between crime, urban
indicators and the population; usually assuming these relationships

to be linear [34]. On the other hand, several works have shown
that crime and urban indicators obey scaling laws with the
population size of the cities and also between themselves [35–39].
For instance, the number of homicides grows super-linearly with
the population [39,40]. Do not consider these scaling laws may be
one of the reasons that several regression-based analysis led to
controversial conclusions [34]. Furthermore, if we assume that
these scaling laws with the population size are somehow a natural
expression of how cities are organized, accounting for the scaling
phenomenon is also very important for achieving a fairer
comparison between cities with different population sizes.

Here we investigate a procedure that may help to solve this
problem. The approach consists of defining a ‘‘distance’’ between
the crime or urban indicators and the main tendency expected by
the scaling laws with the population size. This approach is based
on the recent idea of relative competitiveness proposed by
Podobnik et al. [41] in the economic context. Our paper is thus
organized as follows. We start by presenting our data of urban and
crime indicators of Brazilian cities and also an intensive
characterization of the scaling laws existing between these
indicators and the population size. We also employ a linear
regression model for explaining the number of crime acts
(homicides) in terms of the urban indicators. Next, we use the
previously-discussed distance in an attempt to investigate relation-
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ships/patterns between crime and urban metrics that do not
appear in the regression analysis. Finally, we present a summary of
our results.

Materials and Methods

Data presentation
We have accessed data of the Brazilian cities in the year of 2000

made freely available by the Brazil’s public healthcare system –
DATASUS [42]. These data are also attached to our paper in
Table S1. Here, despite there being other definitions [43], we
have considered that cities are the smallest administrative units
with a local government and it is not our intention to discuss the
role of other definitions. The data consist of the population size (N)
and the number of homicides (H) as well as ten urban indicators
(Y ) at city level: number of cases of child labour, elderly
population size (older than 60 years), female population size,
gross domestic product (GDP), GDP per capita, number of
illiterate (older than 15 years), average family income, male
population size, number of sanitation facilities, and number of
unemployed (older than 16 year). More details about urban
indicators can be found in Text S1. Observe that we have chosen
the number of homicides as our crime indicator. This is a widely
used choice [39] due the fact that homicide data are more reliable,
since this ultimate expression of violence is almost always reported.
Also, our ten urban indicators are usually listed as crime
determinants [34]. Furthermore, we have considered only cities
with at least one case of homicide in our analysis.

Results and Discussion

Scaling laws between crime, urban metrics and
population

We start by revising the question of whether homicides and
urban metrics present scaling relations with the population size
(see also Refs. [35–40]). For the sake of simplicity, let us denote the
population size by N and the urban indicators by Y . We thus want

to check if Y is a power law function of N, that is, Y*Nb, where
b is the power law exponent. Figure 1 shows a scatter plot of
log10 Y versus log10 N for all urban indicators, starting with the
number of homicides and passing through all the ten urban
metrics. We note that, despite the existence of considerable noise
in some relationships, the scaling laws with the population size are
perceptible. In order to overcome the noise and uncover the main
tendency in these relationships, we have binned the data in w
windows equally spaced in log10 N and evaluated the average
values of the points within each window. The square symbols
shown in Fig. 1 represent these average values and the dashed lines
are linear fits. Note that linear functions describe quite well all the
average relations, that is, the equation

S log10 YTw~Azb log10 N ð1Þ

holds for all the urban indicators. Here, S log10 YTw is the average
value of Y within each one of the w windows, A is a constant and
b is the power law exponent (shown in Fig. 1). We have thus
confirmed that there are scaling laws between the average values
of the urban indicators Y and the population N . It is worth to
remark that these average relationships are very robust when
varying the number of windows w (see Fig. S1).

Another striking feature of Fig. 1 is the fluctuation around the
power law tendency. We have observed that the standard
deviation

sw~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S(S log10 YTw{ log10 Y )2Tw

q
ð2Þ

within each window practically does not change with the
population size N for all urban indicators (Fig. 2A). We have
also verified that the normalized residuals around the power law,

j~
log10 Y (N){S log10 YTw

sw
, ð3Þ

are normally distributed with zero mean and unitary standard
deviation (Fig. 2B). In particular, the Kolmogorov-Smirnov test
[45] cannot reject the normality of j for all the urban indicators
(the p-values are all larger than 0.51).

Our previous analysis thus enable an elegant formulation to the
average scaling laws and also to the noise around these tendencies.
Mathematically, we can write

Y~Ag(N)Nb ð4Þ

or, equivalently

log10 Y~ log10Azb log10 Nz log10 g(N) , ð5Þ

where log10A~A and log10 g(N)~sw j(N). Notice that, since
j(N) is normally distributed, g(N) should be distributed according
to a log-normal distribution. In addition to describe the average
scaling laws, Eq. (4) represents a stochastic-like process where the
urban indicator Y follows a power law relation with the
population N driven by a multiplicative noise log-normally
distributed.

Regression model: homicides versus urban metrics
As we have mentioned in the introduction, a considerable part

of the literature about criminality tries to correlate crime indicators
to other urban metrics. Usually, these relationships are obtained
from linear regression models, despite the explicit nonlinearities
present in these variables such as the previous scaling laws. In this
context, it is not uncommon to observe linear regression-based
analysis leading to controversial conclusions [34]. A simple
alternative that may overcome these nonlinearities is to employ
the logarithmic of the variables, that is,

log10 H(i)~C0z
X

k

Ck log10 Yk(i)ze(i) : ð6Þ

Here, H(i) is the number of homicides in the city i, Yk(i) is the
k-th (kw1) urban indicator of the city i, C0 is the intercept
coefficient, Ck (kw1) is the linear coefficient that quantifies the
explicative effect of log10 Yk(i), and e(i) is the noise term
accounting for the effect of unmeasurable factors.

We have applied the previous model to our data by using
ordinary least-squares fit with a correction to heteroskedasticity
[46] and the results are summarized in Table 1. We first note that,
except for sanitation and unemployment, all the urban indicators
have explanatory potential for describing the number of homi-

cides. Also, the value of the adjusted R2 points out that the model
account for about 62% of the observed variance in number of
homicides. When analyzing the individual effects of the urban
indicators, we note that child labour, elderly population, female
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population, GDP per capita, and male population are negatively
correlated with the number of homicides (H decreases with the
increasing of these indicators). On the other hand, GDP, illiteracy,
and income are positively correlated with the number of homicides
(H increases with the increasing of these indicators). Despite the
lack of a more adequate comparison with our data, our regression
results agree but also disagree with some empirical findings of the
criminology literature. For instance, we have found that there is no
statistically significant correlation between unemployment and
homicides, while a positive and statistically significant correlation
between illiteracy and homicides was observed. However, these
indicators are among those leading to controversial conclusions, as
pointed out by Gordon [34].

Naturally, our regression model is quite simple and several
improvements are possible. For instance, some of these metrics

may display correlations and, consequently, one metric may affect
the predicability of another, a phenomenon known as mediation
[47]. A possible manner for reducing this effect is by combining
some of the metrics and running different regression models.
Another possibility is to employ principal component analysis
(PCA) for reducing redundancy among the urban metrics.
Nevertheless, other problems such as bias in the selection of
urban metrics and difficulties in drawing qualitative conclusions in
terms of the PCA axis are still present. Here, instead of discussing
the possible controversies that Table 1 may exhibit as well as
possible manner of improving our regression results, we will
compare this simple regression analysis with our new approach
based on the deviations of the scaling laws.

Figure 1. Scaling laws between the population size and the urban indicators. In each plot, the green dots are base-10 logarithmic of the
values of the urban indicator (Y ) versus the population size (N) for a given city. The black squares are average values of the data binned in 10 equally
spaced windows and the error bars are 95% confidence intervals for these average values obtained via bootstrapping [44]. The values of the Pearson
correlation coefficients r (as well as the 95% confidence intervals) of these relationships are shown in each plot. The straight dashed lines are linear
fits (by least square method) to the average relationships and the slope of these lines are equal to the power law exponent b (shown in each plot).
doi:10.1371/journal.pone.0069580.g001
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Figure 2. Fluctuations around the scaling laws. (A) Standard deviation sw of the fluctuations around the scaling laws (in base-10 logarithmic
scale) in each one of the w~10 equally spaced windows. We note that the standard deviation is almost a constant function of the population for all
urban indicators. The average value of sw over the population windows are shown in the plot legends. (B) Cumulative distributions of the normalized
fluctuations j around the scaling laws. In this plot, each gray line is a distribution for a given indicator, the squares are the average values of these
cumulative distributions and the error bars are 95% confidence intervals obtained via bootstrapping [44]. We note that the Gaussian distribution
(dashed line) describes quite well these distributions. In particular, the smallest p-value of the Kolmogorov-Smirnov tests is 0:51, showing that we
cannot reject the normality of the fluctuations.
doi:10.1371/journal.pone.0069580.g002

Table 1. Regression model coefficients.

k Indicator Yk
Coefficient Ck Standard Error t p.|t|

95% Confidence Interval

Gray 0 Intercept 322.932 84.653 3.81 0.000

Gray [156.944, 488.920]

1 Child labour 20.146 0.035 24.11 0.000

[20.216, 20.076]

Gray 2 Elderly population 20.647 0.066 29.81 0.000

Gray [20.777, 20.518]

3 Female population 256.644 15.488 23.66 0.000

[287.015, 226.274]

Gray 4 GDP 121.127 31.375 3.86 0.000

Gray [59.605, 182.648]

5 GDP per capita 2120.987 31.375 23.86 0.000

[2182.509, 259.465]

Gray 6 Illiteracy 0.213 0.051 4.11 0.000

Gray [0.111, 0.314]

7 Income 0.223 0.073 3.05 0.002

[0.079, 0.367]

Gray 8 Male population 262.459 16.068 23.89 0.000

Gray [293.967, 230.952]

9 Sanitation 20.665 0.929 20.72 0.474

[22.487, 1.156]

Gray 10 Unemployment 20.026 0.028 20.94 0.347

Gray [20.082, 0.028]

Adjusted R2 = 0.62

Values of the linear coefficients Ck obtained via ordinary least-squares fits with a correction to heteroskedasticity. Here, t is the value of the t-statistic and p is the two-
tail p-value for testing the hypothesis that the coefficient Ck is different from zero.
doi:10.1371/journal.pone.0069580.t001
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A relative metric: distance to the scaling laws
In addition to overcome the nonlinearities by employing the

logarithmic of the urban indicators, we may also account for the
scaling behavior between the urban indicators, homicides and the
population size (Fig. 1) aiming a fairer comparison between cities
with different population sizes. We thus have proposed to evaluate
the differences between the actual value of the urban indicators
and the expected by the adjusted power law, that is,

DY ~ log10 Y{S log10 YTw

~ log10 Y{(Azb log10 N) : ð7Þ

Note that DY identifies whether a urban indicator for the given
city is above (DY w0) or below (DY v0) the average scaling law as
well as how far it is. We have also evaluated this distance for the
number of homicides, that is, DH~ log10 H{S log10 HTw (note
that we are committing an abuse of terminology when denoting D

as a distance). This is the same idea recently proposed by Podobnik
et al. [41] for quantifying the competitiveness among countries.

We have thus studied the relations between the distance
evaluated from the homicide indicator (DH ) and the other urban
metrics (DY ). Figure 3 shows a scatter plot of DY versus DH ,
where we note that all of the urban metrics distances (except
unemployment) have statistically significant correlations with the
homicide distance (see the values of Pearson correlation r in these
plots). We have also observed that the sign of the correlation
coefficient r agrees with value of the linear coefficient Ck for the
indicators child labour, elderly population, female population,
GDP, income, sanitation, and unemployment. However, for the
indicators GDP per capita, illiteracy and male population, the sign
of r is opposite to the signal of Ck. This result means, for instance,
that while the regression analysis suggests that the increase in the
male population is followed by a decrease in the number of
homicides, the results when considering the relative distances point
out that the more the male population is above the power law
tendency, the more the number of homicides is above the power
law tendency. Similar controversial conclusions are obtained for
the indicators GDP per capita and illiteracy.

Figure 3. Distance to the scaling laws evaluated for the urban indicators versus the distance evaluated for the number of
homicides. Scatter plot of the distances to the scaling laws evaluated for the urban indicators (DY ) versus the distance evaluated for the number of
homicides (DH ). The color code represents the density of points, going from blue (low density) to red (hight density). We show in each plot the value
and the 95% confidence intervals for the Pearson correlation coefficient r. We note that DY evaluated for GDP, GDP per capita, income, and male
population are positively correlated with DH , while DY related to child labour, elderly population, female population, illiteracy, sanitation, and
unemployment are negatively correlated with DH . We further observe the bimodal distributions of the relationships for GDP, GDP per capita,
illiteracy, and income.
doi:10.1371/journal.pone.0069580.g003
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In addition to the value of the Pearson correlation r, the scatter
plots in Fig. 3 reveals other intriguing patterns. We note that the
relation between the homicide distance and the indicators GDP,
GDP per capita, illiteracy, and income are characterized by two
peaks in the density of points, while for all the other indicators the
density of points displays only one peak. We also note that both
peaks of these bimodal distributions are located around DH&0.
This result indicates that, despite the positive values of r, there is a
considerable number of cities that displays distance values for DY

above and below the power law tendency with approximately the
same value for the distance DH , suggesting that such indicators
may not be as good as the other ones for describing the number of
homicides.

Another manner of extracting meaningful information from
Fig. 3 is by evaluating average values. In order to do so, we have
grouped the cities in two sets: those having DHw0 (homicides
above the power law) and those with DHv0 (homicides below the
power law). We next evaluate the average value of DY for each
group and considering the cities with absolute value of DH larger
than a threshold D. Figure 4 shows these average values as a
function of the threshold D. We have observed that for the
indicators child labour, illiteracy and sanitation, the average values

of DY are significantly different between the two groups of cities
and also that the average of DY increases as D increases for the
cities with DHw0 and decreases for those ones with DHv0. The
opposite occurs for the indicators GDP, GDP per capita and
income, that is, the average of DY decreases as D increases for
the cities with DHw0 and increases for those ones with DHv0.
Intriguingly, for the indicator elderly population we observe
that cities with DH below the power law present an average value
of DY larger than those with DH above the power law; however,
this difference is only statistically significant for D=0:45. This
result suggests that, for cities having a much larger or much
smaller number of homicides than the expected by the power law
tendency, the elderly population may have no explanatory
potential. Similarly, for the unemployment indicator, no difference
is observed between the average values of DY above and below the
power law until D *> 0:56. For slightly smaller value of D, the

average value of DY (for unemployment) for cities above the
power law starts to systematically decrease and for D&0:56 a
statistically significant difference is observed. This result thus
provides us a clue for a better understanding of the explicative
potential of the unemployment indicator, by pointing out that (in

Figure 4. Average values of the distances to the scaling laws versus the homicide distance threshold. The average values of distances
evaluated for each urban indicator in function of the homicide distance threshold D, after grouping the cities that are above (red continuous lines)
and below (blue dashed lines) the scaling laws with the population size. The shaded areas are 95% confidence intervals for these average values
obtained via bootstrapping [44].
doi:10.1371/journal.pone.0069580.g004
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our data) its effect is only manifested when DH is much above of
the value expected by the scaling law.

Figure 4 also provides clues of a gender effect in the number of
homicides. For female population, we note that cities with number
of homicides above the power law (DHw0) are characterized by
an average value of DY v0 that decreases as the value of D
increases. We also observe that the confidence intervals for the
average values of DY above and below the power law barely
overlap each other. These results thus point out that in cities where
the number of homicides is above the expected value, the female
population is systematically smaller than the value expected by the
scaling law. For male population, despite the overlapping in the
confidence intervals for the average of DY , we observe an opposite
behavior, that is, cities with number of homicides above the power
law are also characterized by a male population above the power
law.

Summary and Conclusions

We have extensively characterized some relationships between
crime and urban metrics. We have initially shown that urban
indicators obey well defined average scaling laws with the
population size and also that the fluctuations around these
tendencies are log-normally distributed. Using these results, we
have shown that the scaling laws can be represented by a
multiplicative stochastic-like equation (Eq. 4) driven by a log-
normal noise. Next, we have addressed the problem of applying
regression analysis for explaining the number of homicides H in
terms of urban indicators Y . Because of the intrinsic nonlinea-
rities, we have argued that it is better to employ the logarithms of
these variables when performing linear regression analysis (Eq. 4
and Table 1). Furthermore, we have also discussed that accounting
for the scaling phenomenon is also important for a fairer
comparison among cities with different population sizes. We have
thus proposed to evaluate the distances between the actual number
of homicides H (DH ) as well as the value of the urban indicator Y
(DY ) and the one expected by the average scaling laws. By
investigating the Pearson correlations (r) of the relationships
between DH and DY , we have found that the value of r have the
same signal of the linear coefficient Ck for the indicators child
labour, elderly population, female population, GDP, income,
sanitation, and unemployment. On the other hand, for GDP per
capita, illiteracy and male population the signal of r and Ck are
opposite. In addition to the values of r, we have analyzed the
average values of DY after grouping the cities in two sets: those

with number of homicides above the power law (DHw0) and those
below the power law (DHv0). This analysis has unveiled
intriguing patterns that were not carried out by the linear
regression. In particular, our results for Brazilian cities pointed
out that i) the elderly population may have no explanatory
potential when the number of homicides is much above or much
below of the expected values by the scaling law, ii) that the effect
of unemployment in the number of homicides is only observed for
cities with DH considerably larger than the expected by the power
law, and iii) that there are gender differences in the number of
homicides, where cities with female population below the expected
value are characterized by a number of homicides above the
power law and that cities with number of homicides above the
power law are also characterized by a male population above the
power law. We further believe that the present approach can be
applied to other datasets in order to produce more robust
relationships between crime indicators and urban metrics.

Supporting Information

Figure S1 Robustness of the power law exponent versus
the number of windows employed in the average
relationships. The value of power law exponent b versus the
number of windows w employed to evaluate the average
relationships between log10 Y and log10 N . The error bars are
95% confidence intervals for the value of b and the horizontal red
lines are the average values of b over w. We note the almost
constant behavior of b in function of w.
(TIF)

Table S1 Data used in our analysis. This comma separated
file (CSV) has 13 columns where the first one contains the names
of the cities and the other columns contains the urban metrics used
here. The first line is a header indicating the urban metrics.
(CSV)

Text S1 Details about the urban indicators used here.
(PDF)
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