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Diffusive process on a backbone structure with drift terms

E. K. Lenzi,1,* L. R. da Silva,2 A. A. Tateishi,1,3 M. K. Lenzi,4 and H. V. Ribeiro1

1Departamento de Fı́sica, Universidade Estadual de Maringá, Avenida Colombo 5790, 87020-900 Maringá, PR, Brazil
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The effects of an external force on a diffusive process subjected to a backbone structure are investigated by
considering the system governed by a Fokker-Planck equation with drift terms. Our results show an anomalous
spreading which may present different diffusive regimes connected to anomalous diffusion and stationary
states.
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I. INTRODUCTION

“The ant in the labyrinth” was the term used by P. G.
de Gennes [1] to illustrate the random walk problem in an
infinite percolation cluster. As is known, the random walk
concept is intrinsically related to diffusion phenomena, which,
depending on the conditions imposed by the system, can
exhibit unusual characteristics. One of them is the presence of
anomalous relaxation, e.g., a nonlinear time dependence on the
mean square displacement such as 〈(r − 〈r〉)2〉 ∼ tα (α �= 1 is
connected to anomalous diffusion). This power law has been
widely found in several systems with disordered structures [2],
fractals [3], and percolation clusters [4,5] with α = 2/dW ,
where dW is the fractal dimension. In this scenario, a comb-like
structure (see Fig. 1) was proposed as a model to investigate
anomalous diffusion in percolation clusters with topological
bias [6,7], wherein, according to Ref. [2], the branches of the
comb play the same role as the dangling ends of the percolation
cluster and the backbone of the comb is analogous to the
quasilinear structure of the backbone of the cluster.

A diffusive process subject to a comb-like structure is de-
scribed by the following Fokker-Planck equation, as reported
in Ref. [8],

∂

∂t
ρ(x,y; t) = Dy

∂2

∂y2
ρ(x,y; t) + δ(y)Dx

∂2

∂x2
ρ(x,y; t),

(1)

where Dy and Dx are the diffusion coefficients in the x and
y directions. The distributions obtained from this equation
show that the diffusion in the x direction is not usual and
can be connected to a fractional diffusion equation [9–11],
as shown in Refs. [12–14]. This model, which is a simplified
picture of highly disordered systems, can be connected to a rich
class of anomalous diffusive processes [8,15–18] due to the
geometric constraints [19] with the advantage of performing
an exact analysis and providing analytical solutions [20,21],
which can be used as a guide for more complex situations.
In previous work, the subdiffusive (α < 1) and superdiffusive
(α > 1) cases have been addressed in Refs. [20–26], a toy
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model to describe the dynamics of cancer proliferation is
developed in Refs. [27,28], in Refs. [29] and [30] a fractional
quantum dynamics is investigated, in Ref. [31] the usual
form of the comb model is extended by incorporating fractal
aspects, and in Ref. [32] ultracold atoms in a one-dimensional
are investigated. Furthermore, different diffusive regimes have
been reported in Ref. [33] as a consequence of the backbone
structure incorporated in the diffusion equation. Here, we
investigate the effects produced by an external force on
the diffusive processes subjected to the structure represented in
Fig. 1. In particular, we consider the Fokker-Planck equation

∂

∂t
ρ(x,y; t) = Dy

∂2

∂y2
ρ(x,y; t)

+Dxδ(y)

(
∂2

∂x2
− vx

∂

∂x

)
ρ(x,y; t)

−∇ · (�vρ(x,y; t)), (2)

with �v = (vx,vy), where vx , vy , and vx are constants. Equation
(2) extends Eq. (1) by incorporating the drift term �F =
(vx + δ(y)vx,vy), which represents an external force acting on
the system. The boundary conditions used to investigate the
solutions of Eq. (2) are ρ(±∞,y; t) = 0 and ρ(x,±∞; t) = 0;
i.e., the backbone and the branches of the comb are not
limited. We also consider an arbitrary initial condition given by
ρ(x,y; 0) = ρ̂(x,y), where ρ̂(x,y) is normalized. Our results
show that the presence of the external force changes the
diffusive process and may introduce different diffusive regimes
depending on the choice of the parameters vx , vy , and vx .

This work is organized as follows. The next section, Sec. II,
is devoted to investigating the effects of the drift forces outside
and inside of the backbone. In Sec. III, we present a summary
of the results and our conclusions.

II. DRIFT FORCES AND BACKBONE STRUCTURE

Let us start our analysis by considering the case where
drift forces act outside of the backbone structure, i.e., vx �= 0,
vy �= 0, with vx = 0. For this case, by using the Green function
approach, the distribution obtained from Eq. (2) is given by

ρ(x,y; t) = −
∫ ∞

−∞
dyρ̂(x,y)G(x,y,y; t), (3)
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FIG. 1. Illustration of the backbone structure used in the comb
model. Note that diffusion in the x direction only occurs when y = 0
and diffusion in the y direction is perpendicular to the x axis.

with the Green function,

G(x,y,y; t) = −e
vy

2Dy
(y−y)

e
− v2

y

4Dy
tG ′(x,y,y; t),

G ′(x,y,y; t) = 1√
4πDyt

δ(x − vxt)
(
e
− (y−y)2

4Dy t − e
− (|y|+|y|)2

4Dy t
)

+ 1√
8Dx

√
Dy

|y| + |y|√
4πDy

∫ t

0
dt

e
− (|y|+|y|)2

4Dy (t−t)[
(t − t)t

1
2
] 3

2

× H1,0
1,1

[√
2

D x

√
Dy

t
|x − vxt |

∣∣∣( 1
4 , 1

4 )
(0, 1)

]
(4)

(details of calculations and useful properties of the H function
can be found in Appendixes A and B). Now we address
our attention to the relaxation of the system in order to
characterize the effect produced by drift forces on system.
In order to perform this analysis, we consider the mean square
displacement for the x and y directions, for simplicity, by
taking into account the initial condition ρ̂(x,y) = δ(x)δ(y −
ỹ ). After some calculation, it is possible to show that

σ 2
x (t) = 〈(x − 〈x〉)2〉

= 2Dxe
− vy

2Dy
ỹ

∫ t

0

dτ√
4πDyτ

e
− v2

y

4Dy
τ
e
− ỹ2

4Dy τ (5)

and σ 2
y (t) = 2Dyt . Equation (5) shows that the drift force

vx does not influence the backbone structure and that, for
vy = 0, we recover the mean square displacement presented in
Ref. [20]. For vy �= 0, we observe a kind of confined diffusive
regime for long times, also called a saturation regime, as
shown in Fig. 2. This kind of behavior has been reported
in Brownian dynamics simulations of a single polymer [34],
in time series of continuous-time random walk and fractional
Brownian motion [35], and also in living cells [36–39], where
the crowded environment of the cytoplasm and the constrained
diffusion are possible physical mechanisms of the anomalous
diffusion. Moreover, once the comb model was proposed to
mimic percolation-like structures, it is remarkable to note
that the behavior of spreading obtained here is in good
agreement with the diffusion reported in percolation clusters
below the criticality, i.e., p < pc (where pc is the critical
probability threshold of percolation transition) and the clusters
are considered finite (see Ref. [2]). Hence, due to the constant
force acting on the y axis the system remains confined in the
branches, i.e., the particles fall into a trap of the labyrinth and
do not return to the backbone. In this manner, we verify that
the drift term in the y direction changes the spreading of the
system in the backbone and lead us to a stationary solution in
the x direction.

FIG. 2. (Color online) Time behavior of the mean square dis-
placement with vx = 0, Dy = 20, Dx = 10, and ỹ = 0.8. The solid
(black) line corresponds to the case vy = 0.1 and the dashed (red) line
is the case vy = 1. Note that saturation in the x direction is reached
more rapidly for large values of vy and more slowly for small values
of vy . The dotted (blue) line was incorporated in order to illustrate
the subdiffusive behavior presented by the system before reaching
the stationary state.

Let us incorporate the drift force acting in the backbone
structure, i.e., vx �= 0, in the x direction. The presence of this
term in the external force leads us to the following expression
for the Green function:

G(x,y,y; t) = −e
− v2

y

4Dy
t
e

vy

2Dy
(y−y)G̃(x,y,y; t), (6)

where

G̃(x,y,y; t) = 1√
4πDyt

δ(x − vxt)
(
e
− (y−y)2

4Dy t − e
− (|y|+|y|)2

4Dy t
)

+ 1

t

∫ ∞

0
du(|y| + |y| + 2Dyu)

×Gy(|y|,|y|,2Dyu; u)Gx (x, − vxu, − vxt ; t) ,

(7)

and Gα(x,y,z; u) = e− 1
4Dαu

(x+y+z)2

/
√

4πDαu (details of cal-
culations and useful properties of the H function are given
in Appendixes A and B). Similarly to the previous case, we
analyze the behavior of mean square displacement in the x and
y directions to investigate the effect of the external force on
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FIG. 3. (Color online) Time behavior of the mean square dis-
placement for vy = 0, Dy = 20, Dx = 10, and ỹ = 0.8. The straight
dotted lines were added in order to illustrate the usual and the
subdiffusive behavior which can be manifested by the mean square
displacement obtained from Eqs. (8) and (9). Dashed (blue), solid
(red), and dotted (green) lines correspond to the cases vx = 10,
vx = 1, and vx = 0.1, respectively, as indicated.

the relaxation of the system. For this case, we obtain

〈x〉 = vxt + vxe
− vy

2Dy
ỹ√

4πDy

∫ t

0

dt√
t
e
− v2

y

4Dy
t
e
− ỹ2

4Dy t (8)

and

〈x2〉 = v2
xt

2 +
∫ t

0

dt√
πDyt

(2vxvx(t − t) + Dx)e− (ỹ+vy t)2

4Dy t

+ v2
x

2Dy

∫ t

0
dte

− vy

2Dy
ỹ
e
− v2

y

4Dy
terfc

(
− |ỹ|

2
√
Dyt

)
. (9)

Figure 3 illustrates the behavior of the mean square dis-
placement obtained for the previous equations by considering
vy = 0 and vx = 0. An interesting feature is the presence of
two different regimes after an initial transient. One of these
regimes is subdiffusive and the other is usual. In this sense,
note that the presence of the subdiffusive regime depends
on the values of vx , e.g., vx 
 1 yields an usual behavior,
while vx � 1 yields a subdiffusive behavior. In addition, the
same dynamical crossover between subdiffusion and normal
diffusion is reported in Ref. [15], where the authors studied the
random walk in a comb lattice by numerical simulations. This
kind of crossover is also found in polymer physics, where,
according to Ref. [40], the dynamics of a tagged monomer

FIG. 4. (Color online) Time behavior of the mean square dis-
placement for vy = 5 × 10−4, vx = 0, vx = 1, Dy = 5, Dx = 10, and
ỹ = 0.1. The dotted (blue) and dashed (red) lines were incorporated in
order to illustrate the subdiffusive behaviors presented by the system
before reaching the stationary state.

in a polymer must be anomalous until the terminal relaxation
time, and this anomalous dynamics is connected to the mean
relaxation response of the polymers to local strains [41].
In particular, for phantom Rouse polymers the mean square
displacement of a tagged monomer behaves as t1/2 until the
terminal relaxation time τ , and only after that time does the
dynamics of the polymer become diffusive [42]. Moreover,
in the theory of percolation clusters diffusion is usual when
percolation occurs, i.e., p > pc, and the clusters are considered
infinite [2]. In Fig. 4, we incorporate the drift term in the y

direction, i.e., vy �= 0, and a stationary behavior is obtained
for the distribution in the x direction, since σ 2

x (t) is constant
for long times as in the previous case worked out for the drift
term outside of the the backbone structure.

III. DISCUSSION AND CONCLUSIONS

We have analyzed the Fokker-Planck equation in a back-
bone structure by considering the presence of drift terms acting
in the y and x directions. The drift term has components
inside and outside of this structure. For the case characterized
by the drift terms with components outside of the backbone
structure, the component dependent on vx does not influence
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the spreading of the system. In this case, the presence of vy

leads us to a stationary solution for the x direction as shown
in Fig. 2, and as expected, it does not have an influence on
the y direction, which is characterized by the usual diffusion.
For the case vx = 0, vx �= 0, and vy = 0, we obtain an
interesting behavior for the system when the x direction is
analyzed. It presents different diffusive regimes, one of which
is subdiffusive and the other the usual. The existence of the
subdiffusive behavior depends on the values of vx , i.e., for
vx � 1 the system remains in the subdiffusive regime for
a long time, and for vx 
 1 the subdiffusive regime may
not exist. This fact suggests that, for large values of vx , the
system remains in the backbone structure for a short time,
which is governed by the subdiffusive case in connection
to the fractional diffusion equation. In this scenario, the
presence of vy changes the last diffusive regime and leads
us to a stationary solution as in the first case characterized
by vy = 0 as illustrated in Fig. 2. Finally, we hope that the
results presented here are useful to discuss diffusive processes
connected to anomalous diffusion.
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APPENDIX A: SOLUTIONS

Equation (2) subjected to the conditions vx �= 0, vy �= 0,
with vx = 0, can be written as

∂

∂t
ρ(x,y; t) = Dy

∂2

∂y2
ρ(x,y; t) + δ(y)Dx

∂2

∂x2
ρ(x,y; t)

−∇ · (�vρ(x,y; t)). (A1)

In order to obtain the solution for Eq. (A1) subjected to
the conditions discussed in Sec. I in terms of the Green
function approach, we use Laplace and Fourier transforms.
Applying the Laplace transform (L{· · ·} = ∫ ∞

0 dte−st · · · and

L−1{· · ·} = 1
2πi

∫ i∞+c

−i∞+c
dsest · · ·) in Eq. (A1), we obtain

Dy

∂2

∂y2
ρ(x,y; s) + δ(y)Dx

∂2

∂x2
ρ(x,y; s) − ∇ · (�vρ(x,y; s))

= sρ(x,y; s) − ρ̂(x,y). (A2)

This equation can be simplified by employing the Fourier
transform on the x variable (Fx{· · ·} = ∫ ∞

−∞ dxe−ikxx · · · and
F−1

x {· · ·} = 1
2π

∫ ∞
−∞ dke−ikxx), yielding the differential equa-

tion,

Dy

∂2

∂y2
ρ(kx,y; s)

−
(

s + vy

∂

∂y
+ δ(y)Dxk

2
x + ikxvx

)
ρ(kx,y; s) = −ρ̂(kx,y),

(A3)

which can be solved using the Green function approach. Using
this approach the solution of Eq. (A3) is given by

ρ(kx,y; s) = −
∫ ∞

−∞
dyρ̂(kx,y)G(kx,y,y; s), (A4)

with the Green function obtained from the equation(
Dy

∂2

∂y2
− vy

∂

∂y
− δ(y)Dxk

2
x − ikxvx − s

)
G(kx,y,y; s)

= δ(y − y) (A5)

subjected to the Dirichlet boundary condition, i.e.,
G(kx,±∞,y; s) = 0. Equation (A5) may also be solved by us-
ing the Fourier transform with respect to variable y (Fy{· · ·} =∫ ∞
−∞ dye−ikyy · · · and F−1

y {· · ·} = 1
2π

∫ ∞
−∞ dkeikyy). The solu-

tion in the Fourier space for Eq. (A5) is given by

G(kx,ky,y; s) = − e−ikyy

Dyk2
y + ikyvy + ikxvx + s

− Dxk
2
x

Dyk2
y + ikyvy + ikxvx + s

G(kx,0,y; s).

(A6)

After some calculations, it is possible to show that

G(kx,0,y; s) = −e
− vy

2Dy
y
e
−

√
β

2Dy
|y|

√
β + Dxk2

x

, (A7)

with β = v2
y + 4Dys + 4iDykxvx . By substituting Eq. (A7) in

Eq. (A6) and performing the inverse of Laplace transform, one
obtains

G(kx,y,y; t)

= −e
vy

2Dy
(y−y)

e
− v2

y

4Dy
t
e−ikxvx t

{
1√

4πDyt

(
e
− (|y|+|y|)2

4Dy t − e
− (y−y)2

4Dy t
)

(A8)

+ 1

2Dy

(|y| + |y|)
∫ t

0
dt

e
− (|y|+|y|)2

4Dy (t−t)√
4πt(t − t)3

× E 1
2 , 1

2

(
− Dxk

2
x

2
√
Dy

√
t

)}
. (A9)

Note the presence of the generalized Mittag-Leffler function
in the last part of the previous equation [43]. Performing the
inverse Fourier transform on the x variable and considering
some identities of the Fox H function [44,45] (see, in particular,
Appendix A), it is possible to show that the Green function is
given by

G(x,y,y; t) = −e
vy

2Dy
(y−y)

e
− v2

y

4Dy
tG ′(x,y,y; t),

G ′(x,y,y; t) = 1√
4πDyt

δ(x − vxt)
(
e
− (y−y)2

4Dy t − e
− (|y|+|y|)2

4Dy t
)

+ 1√
8Dx

√
Dy

|y| + |y|√
4πDy

∫ t

0
dt

e
− (|y|+|y|)2

4Dy (t−t)

[(t − t)t
1
2 ]

3
2

× H1,0
1,1

[√
2

D x

√
Dy

t
|x − vxt |

∣∣∣( 1
4 , 1

4 )
(0, 1)

]
.

(A10)
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Let us consider the solutions for the case vx �= 0, vy �= 0, and vx �= 0. For this case, Eq. (2) is given by

∂

∂t
ρ(x,y; t) = Dy

∂2

∂y2
ρ(x,y; t) + δ(y)

(
Dx

∂2

∂x2
− vx

∂

∂x

)
ρ(x,y; t) − vy

∂

∂y
ρ(x,y; t) − vx

∂

∂x
ρ(x,y; t). (A11)

In order to solve this equation, it is possible to employ the same procedure used to obtain the solution of Eq. (A1). In this sense,
we start by applying the Laplace transform and the Fourier transform on the x variable in Eq. (A11), which leads us to the
equation

Dy

∂2

∂y2
ρ(kx,y; s) −

(
s + vy

∂

∂y
+ δ(y)

(
Dxk

2
x + ikxvx

) + ikxvx

)
ρ(kx,y; s) = −ρ̂(kx,y), (A12)

with the solution given by Eq. (A4) and the Green function governed by the equation

Dy

∂2

∂y2
G(kx,y; s) −

(
s + vy

∂

∂y
+ δ(y)

(
Dxk

2
x + ikxvx

) + ikxvx

)
G(kx,y; s) = δ (y − y) , (A13)

subjected to the boundary conditions G(kx,±∞,y; s) = 0. By
using the Fourier transform with respect to variable y and
performing some calculations, it is possible to show that the
solution in the Fourier space of Eq. (A13) is

G(kx,ky,y; s) = − e−ikyy

Dyk2
y + ikyvy + ikxvx + s

− Dxk
2
x + ikxvx

Dyk2
y + ikyvy + ikxvx + s

G(kx,0,y; s)

(A14)

with

G(kx,0,y; s) = − e
− vy

2Dy
y
e
−

√
β

2Dy
|y|

√
β + Dxk2

x + ikxvx

. (A15)

Applying, in previous equations, the inverse of Laplace and
Fourier transforms, we obtain that

G(x,y,y; t) = −e
− v2

y

4Dy
t
e

vy

2Dy
(y−y)G̃(x,y,y; t), (A16)

where

G̃(x,y,y; t) = 1√
4πDyt

δ(x − vxt)
(
e
− (y−y)2

4Dy t − e
− (|y|+|y|)2

4Dy t
)

+ 1

t

∫ ∞

0
du (|y| + |y| + 2Dyu)

×Gy(|y|,|y|,2Dyu; u)Gx(x,−vxu,−vxt ; t),

(A17)

and Gα(x,y,z; u) = e− 1
4Dαu

(x+y+z)2

/
√

4πDαu.

APPENDIX B: H FUNCTION

The Fox H function (or H function) may be defined in terms
of the Mellin-Branes-type integral [44,45]

Hm,n
p,q

[
x
∣∣(ap,Ap)
(bq ,Bq )

]
= Hm,n

p,q

[
x
∣∣(a1,A1),...,(ap,Ap)
(b1,B1),...,(bq ,Bq )

] = 1

2πi

∫
L

χ (ξ )x−ξ dξ,

χ (ξ ) = �m
j=1
(bj − Bjξ )�n

j=1
(1 − aj + Ajξ )

�
q

j=m+1
(1 − bj + Bjξ )�p

j=n+1
(aj − Ajξ )
,

(B1)

where m, n, p, and q are integers satisfying 0 � n � p and
1 � m � q. It may also be defined by its Mellin transform,∫ ∞

0
Hm,n

p,q

[
ax

∣∣(ap,Ap)
(bq ,Bq )

]
xξ−1dx = a−ξχ (ξ ). (B2)

Here, the parameters have to be defined such that Aj > 0, Bj >

0, and aj (bh + ν) �= Bh(aj − λ − 1), where ν,λ = 0,1,2, . . . ,

h = 1,2, . . . ,m, and j = 1,2, . . . ,m. The contour L separates
the poles of 
(bj − Bjξ ) for j = 1,2, . . . ,m from those of

(1 − aj + Ajξ ) for j = 1,2, . . . ,n [44]. The H function is
analytic in x if either (i) x �= 0 and M > 0 or (ii) 0 < |x| <

1/B and M = 0, where M = ∑q

j=1 Bj − ∑p

j=1 Aj and B =∏p

j=1 A
Aj

j

∏q

j=1 B
−Bj

j .

Some useful properties of the Fox H function found in
Ref. [44] are listed below.

(1) The H function is symmetric in the pairs
(a1,A1), . . . ,(ap,Ap) and, likewise, (an+1,An+1), . . . ,(ap,Ap)
as well as in (b1,B1), . . . ,(bq,Bq) and in
(bn+1,Bn+1), . . . ,(bq,Bq).

(2) For k > 0

Hm,n
p,q

[
x
∣∣(ap,Ap)
(bq ,Bq )

] = kHm n
p q

[
xk

∣∣(ap,kAp)
(bq ,kBq )

]
. (B3)

(3) The multiplication rule is

xkHm,n
p,;q

[
x
∣∣(ap,Ap)
(bq ,Bq )

] = Hm,n
p,q

[
x
∣∣(ap+kAp,Ap)
(bq+kBq ,Bq )

]
. (B4)

(4) For n � 1 and q > m,

Hm,n
p,q

[
x
∣∣(a1,A1)(a2,A2)···(ap,Ap)
(b1,B1)···(bq−1,Bq−1)(a1,A1)

]
= Hm,n−1

p−1,q−1

[
x
∣∣(a2,A2)···(ap,Ap)
(b1,B1)···(bq−1,Bq−1)

]
. (B5)

(5) For m � 2 and p > n

Hm,n
p,q

[
x
∣∣(a1,A1)···(ap−1,Ap−1)(b1,B1)
(b1,B1)(b2,B2)···(bq ,Bq )

]
= Hm−1,n

p−1,q−1

[
x
∣∣(a2,A2)···(ap−1,Ap−1)
(b2,B2)···(bq ,Bq )

]
. (B6)
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(6) The relation between the generalized Mittag-Leffler
function and the Fox H function is given by

Eα,β(x) = H1,1
1,2

[−x
∣∣(0,1)
(0,1)(1−β,α)

]
. (B7)

(7) Under Fourier cosine transformation, the H function
transforms as∫ ∞

0
Hm,n

p,q

[
k
∣∣(ap,Ap)
(bq ,Bq )

]
cos(kx)dx

= π

x
Hn+1,m

q+1,p+2

[
x
∣∣(1−bq ,Bq ),(1,1/2)
(1,1),(1−ap,Ap),(1,1/2)

]
. (B8)

(8) If the poles of
∏m

j=1 
(bj − Bjξ ) are simple, the
following series expansion is valid:

Hm,n
p,q

[
x
∣∣(ap,Ap)
(bq ,Bq )

]
=

m∑
h=1

∞∑
ν=0

(−1)νx(bh+ν)/Bh

ν!Bh

�m
j=1,j �=h


(
bj − Bj

Bh
(bh + ν)

)
�

q

j=m+1

(
1 − bj + Bj

Bh
(bh + ν)

)
×

�n
j=1


(
1 − aj + Aj

Bh
(bh + ν)

)
�

p

j=n+1

(
aj − Aj

Bh
(bh + ν)

) . (B9)
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