Scientific Reports (Accepted, 2019)

Complexity MeasureCryptocurrencyData AnalysisMachine Learning The efficient market hypothesis has far-reaching implications for financial trading and market stability. Whether or not cryptocurrencies are informationally efficient has therefore been the subject of intense recent investigation. Here, we use permutation entropy and statistical complexity over sliding time-windows of price log returns to quantify the dynamic efficiency of more than four hundred cryptocurrencies. We consider that a cryptocurrency is efficient within a time-window when these two complexity measures are statistically indistinguishable from their values obtained on randomly shuffled data. We find that 37% of the cryptocurrencies in our study stay efficient over 80% of the time, whereas 20% are informationally efficient in less than 20% of the time. Our results also show that the efficiency is not correlated with the market capitalization of the cryptocurrencies. A dynamic analysis of informational efficiency over time reveals clustering patterns in which different cryptocurrencies with similar temporal patterns form four clusters, and moreover, younger currencies in each group appear poised to follow the trend of their ‘elders’. The cryptocurrency market thus already shows notable adherence to the efficient market hypothesis, although data also reveals that the coming-of-age of digital currencies is in this regard still very much underway.

Physica A 515, 566-574 (2019)

Complex SystemsUrban IndicatorsUrban Metrics In spite of the considerable progress towards reducing illiteracy rates, many countries, including developed ones, have encountered difficulty achieving further reduction in these rates. This is worrying because illiteracy has been related to numerous health, social, and economic problems. Here, we show that the spatial patterns of illiteracy in urban systems have several features analogous to the spread of diseases such as dengue and obesity. Our results reveal that illiteracy rates are spatially long-range correlated, displaying non-trivial clustering structures characterized by percolation-like transitions and fractality. These patterns can be described in the context of percolation theory of long-range correlated systems at criticality. Together, these results provide evidence that the illiteracy incidence can be related to a transmissible process, in which the lack of access to minimal education propagates in a population in a similar fashion to endemic diseases.

Proc. Natl. Acad. Sci. U.S.A Proc. Natl. Acad. Sci. U.S.A 155, E8585-E8594 (2018).

ArtComplex SystemsData Analysis Art is the ultimate expression of human creativity that is deeply influenced by the philosophy and culture of the corresponding historical epoch. The quantitative analysis of art is therefore essential for better understanding human cultural evolution. Here, we present a large-scale quantitative analysis of almost 140,000 paintings, spanning nearly a millennium of art history. Based on the local spatial patterns in the images of these paintings, we estimate the permutation entropy and the statistical complexity of each painting. These measures map the degree of visual order of artworks into a scale of order–disorder and simplicity–complexity that locally reflects qualitative categories proposed by art historians. The dynamical behavior of these measures reveals a clear temporal evolution of art, marked by transitions that agree with the main historical periods of art. Our research shows that different artistic styles have a distinct average degree of entropy and complexity, thus allowing a hierarchical organization and clustering of styles according to these metrics. We have further verified that the identified groups correspond well with the textual content used to qualitatively describe the styles and the applied complexity–entropy measures can be used for an effective classification of artworks.

Physics Letters A 382, 1903 (2018)

Anomalous Diffusion We investigate the solutions for a set of coupled nonlinear Fokker–Planck equations coupled by the diffusion coefficient in presence of external forces. The coupling by the diffusion coefficient implies that the diffusion of each species is influenced by the other and vice versa due to this term, which represents an interaction among them. The solutions for the stationary case are given in terms of the Tsallis distributions, when arbitrary external forces are considered. We also use the Tsallis distributions to obtain a time dependent solution for a linear external force. The results obtained from this analysis show a rich class of behavior related to anomalous diffusion, which can be characterized by compact or long-tailed distributions.

Physica A 505, 435 (2018)

CrimeMachine Learning Understanding the causes of crime is a longstanding issue in researcher’s agenda. While it is a hard task to extract causality from data, several linear models have been proposed to predict crime through the existing correlations between crime and urban metrics. However, because of non-Gaussian distributions and multicollinearity in urban indicators, it is common to find controversial conclusions about the influence of some urban indicators on crime. Machine learning ensemble-based algorithms can handle well such problems. Here, we use a random forest regressor to predict crime and quantify the influence of urban indicators on homicides. Our approach can have up to 97\% of accuracy on crime prediction, and the importance of urban indicators is ranked and clustered in groups of equal influence, which are robust under slightly changes in the data sample analyzed. Our results determine the rank of importance of urban indicators to predict crime, unveiling that unemployment and illiteracy are the most important variables for describing homicides in Brazilian cities. We further believe that our approach helps in producing more robust conclusions regarding the effects of urban indicators on crime, having potential applications for guiding public policies for crime control.

Applied Mathematics and Computation 330, 254-265 (2018)

Anomalous Diffusion We investigate a process obtained from a combination of nonlinear diffusion equations with reaction terms connected to a reversible process, i.e., 1 -> 2, of two species. This feature implies that the species 1 reacts producing the species 2, and vice-versa. A particular case emerging from this scenario is represented by 1 -> 2 (or 2 ->1), characterizing an irreversible process where one species produces the other. The results show that in the asymptotic limit of small and long times the behavior of the species is essentially governed by the diffusive term terms. For intermediate times, the behavior of the system depends on the reaction terms, particularly on the rates related to the reaction terms. In the presence of external forces, significant changes occur in the asymptotic limits. For these cases, we relate the solutions with the q-exponential function of the Tsallis statistic to highlight the compact or long-tailed behavior of the solutions and to establish a connection with the Tsallis thermo-statistic. We also extend the results to the spatial fractional differential operator by considering long-tailed distributions for the probability density function.

PLoS ONE 13, e0192931 (2018)

Complex SystemsCrimeUrban IndicatorsUrban Metrics Scale-adjusted metrics (SAMs) are a significant achievement of the urban scaling hypothesis. SAMs remove the inherent biases of per capita measures computed in the absence of isometric allometries. However, this approach is limited to urban areas, while a large portion of the world’s population still lives outside cities and rural areas dominate land use worldwide. Here, we extend the concept of SAMs to population density scale-adjusted metrics (DSAMs) to reveal relationships among different types of crime and property metrics. Our approach allows all human environments to be considered, avoids problems in the definition of urban areas, and accounts for the heterogeneity of population distributions within urban regions. By combining DSAMs, cross-correlation, and complex network analysis, we find that crime and property types have intricate and hierarchically organized relationships leading to some striking conclusions. Drugs and burglary had uncorrelated DSAMs and, to the extent property transaction values are indicators of affluence, twelve out of fourteen crime metrics showed no evidence of specifically targeting affluence. Burglary and robbery were the most connected in our network analysis and the modular structures suggest an alternative to “zero-tolerance” policies by unveiling the crime and/or property types most likely to affect each other.

Physica A 498, 74 (2018)

Complex SystemsComplexity MeasureData AnalysisSymbolic Dynamics One of the most useful tools for distinguishing between chaotic and stochastic time series is the so-called complexity-entropy causality plane. This diagram involves two complexity measures: the Shannon entropy and the statistical complexity. Recently, this idea has been generalized by considering the Tsallis monoparametric generalization of the Shannon entropy, yielding complexity-entropy curves. These curves have proven to enhance the discrimination among different time series related to stochastic and chaotic processes of numerical and experimental nature. Here we further explore these complexity-entropy curves in the context of the Rényi entropy, which is another monoparametric generalization of the Shannon entropy. By combining the Rényi entropy with the proper generalization of the statistical complexity, we associate a parametric curve (the Rényi complexity-entropy curve) with a given time series. We explore this approach in a series of numerical and experimental applications, demonstrating the usefulness of this new technique for time series analysis. We show that the R\’enyi complexity-entropy curves enable the differentiation among time series of chaotic, stochastic, and periodic nature. In particular, time series of stochastic nature are associated with curves displaying positive curvature in a neighborhood of their initial points, whereas curves related to chaotic phenomena have a negative curvature; finally, periodic time series are represented by vertical straight lines.

Journal of Complex Networks, cny002 (2018)

Complex NetworksCorruptionData Analysis Corruptive behaviour in politics limits economic growth, embezzles public funds, and promotes socio-economic inequality in modern democracies. We analyse well-documented political corruption scandals over the past 27 years, focusing on the dynamical structure of networks where two individuals are connected if they were involved in the same scandal. Our research reveals that corruption runs in small groups that rarely comprise more than eight people, in networks that have hubs and a modular structure that encompasses more than one corruption scandal. We observe abrupt changes in the size of the largest connected component and in the degree distribution, which are due to the coalescence of different modules when new scandals come to light or when governments change. We show further that the dynamical structure of political corruption networks can be used for successfully predicting partners in future scandals. We discuss the important role of network science in detecting and mitigating political corruption.

Front. Phys. 5, 52 (2017)

Anomalous DiffusionDiffusion The generalized diffusion equations with fractional order derivatives have shown be quite efficient to describe the diffusion in complex systems, with the advantage of producing exact expressions for the underlying diffusive properties. Recently, researchers have proposed different fractional-time operators (namely: the Caputo-Fabrizio and Atangana-Baleanu) which, differently from the well-known Riemann-Liouville operator, are defined by non-singular memory kernels. Here we proposed to use these new operators to generalize the usual diffusion equation. By analyzing the corresponding fractional diffusion equations within the continuous time random walk framework, we obtained waiting time distributions characterized by exponential, stretched exponential, and power-law functions, as well as a crossover between two behaviors. For the mean square displacement, we found crossovers between usual and confined diffusion, and between usual and sub-diffusion. We obtained the exact expressions for the probability distributions, where non-Gaussian and stationary distributions emerged. This former feature is remarkable because the fractional diffusion equation is solved without external forces and subjected to the free diffusion boundary conditions. We have further shown that these new fractional diffusion equations are related to diffusive processes with stochastic resetting, and to fractional diffusion equations with derivatives of distributed order. Thus, our results suggest that these new operators may be a simple and efficient way for incorporating different structural aspects into the system, opening new possibilities for modeling and investigating

Int. J. Electrochem. Sci., 12 (2017) 11677-11691

Electrical Response We review some analytical results obtained in the context of the fractional calculus for the electrical spectroscopy impedance, a technique usually employed to interpret experimental data regarding the electrical response of an electrolytic cell. We start by reviewing the main points of the standard Poisson – Nernst – Planck model. After, we present an extension that incorporates fractional time derivatives of distributed order to the diffusion equation. Then, we include fractional time derivatives on the boundary conditions in order to face the problems that are characterized, in the low-frequency limit, by a frequency dispersion and, consequently, leads to a response in the form , where is the electrical impedance, , with being the frequency of the applied voltage, and . This scenario is extended in order to encompass also the systems characterized by Ohmic electrodes. For these cases, by focusing the low-frequency regime, we discuss the applicability of such extensions as a tool to describe experimental data. This analysis is applied in the description of the electrical impedance of electrolytic cells with Milli – Q water and a weak electrolytic solution of KCl.

Physical Review E 95, 062106 (2017)

Complex SystemsComplexity MeasureData AnalysisSymbolic Dynamics The search for patterns in time series is a very common task when dealing with complex systems. This is usually accomplished by employing a complexity measure such as entropies and fractal dimensions. However, such measures usually only capture a single aspect of the system dynamics. Here, we propose a family of complexity measures for time series based on a generalization of the complexity-entropy causality plane. By replacing the Shannon entropy by a monoparametric entropy (Tsallis q-entropy) and after considering the proper generalization of the statistical complexity (q-complexity), we build up a parametric curve (the q-complexity-entropy curve) that is used for characterizing and classifying time series. Based on simple exact results and numerical simulations of stochastic processes, we show that these curves can distinguish among different long-range, short-range, and oscillating correlated behaviors. Also, we verify that simulated chaotic and stochastic time series can be distinguished based on whether these curves are open or closed. We further test this technique in experimental scenarios related to chaotic laser intensity, stock price, sunspot, and geomagnetic dynamics, confirming its usefulness. Finally, we prove that these curves enhance the automatic classification of time series with long-range correlations and interbeat intervals of healthy subjects and patients with heart disease.

J. Phys. Chem. B 12 (2017) 2882–2886

Anomalous DiffusionElectrical Response In this study, we argue that ion motion in electrolytic cells containing Milli-Q water, weak electrolytes, or liquid crystals may exhibit unusual diffusive regimes that deviate from the expected behavior, leading the system to present an anomalous diffusion. Our arguments lie on the investigation of the electrical conductivity and its relationship with the mean square displacement, which may be used to characterize the ionic motion. In our analysis, the Poisson–Nernst–Planck diffusional model is used with extended boundary conditions to simulate the charge transfer, accumulation, and/or adsorption–desorption at the electrode surfaces.

Entropy 19, 42 (2017)

Generalized Schrödinger We investigate an intermittent process obtained from the combination of a nonlinear

diffusion equation and pauses. We consider the porous media equation with reaction terms related to

the rate of switching the particles from the diffusive mode to the resting mode or switching them from

the resting to the movement. The results show that in the asymptotic limit of small and long times,

the spreading of the system is essentially governed by the diffusive term. The behavior exhibited for

intermediate times depends on the rates present in the reaction terms. In this scenario, we show that,

in the asymptotic limits, the distributions for this process are given by in terms of power laws which

may be related to the q-exponential present in the Tsallis statistics. Furthermore, we also analyze a

situation characterized by different diffusive regimes, which emerges when the diffusive term is a

mixing of linear and nonlinear terms.

Electrochimica Acta 226, 40 (2017)

Anomalous DiffusionElectrical Response We analyze the asymptotic behavior of the impedance (or immittance) spectroscopy response of an electrolytic cell in a finite-length situation obtained from the Poisson-Nernst-Planck (PNP) diffusional model and extensions by taking into account different surface effects. The analysis starts with the case characterized by perfect blocking electrodes and proceeds by considering non-blocking conditions on electrodes surface. We argue that the imaginary part of the impedance may be directly related to the boundary condition on the electrode surface, such as charge accumulation and/or transfer by electrochemical reaction or adsorption-desorption processes. We also compare the theoretical predictions with experimental data obtained for a weak electrolytic solution of KClO_{3}.

Proc. R. Soc. A 472, 20160502 (2016)

Anomalous Diffusion Diffusion of particles in a heterogeneous system separated by a semipermeable membrane is investigated. The particle dynamics is governed by fractional diffusion equations in the bulk and by kinetic equations on the membrane, which characterizes an interface between two different media. The kinetic equations are solved by incorporating memory effects to account for anomalous diffusion and, consequently, non-Debye relaxations. A rich variety of behaviours for the particle distribution at the interface and in the bulk may be found, depending on the choice of characteristic times in the boundary conditions and on the fractional index of the modelling equations.

PLOS Biology 14, e1002573

GenderScience of Science Collaboration plays an increasingly important role in promoting research productivity and impact. What remains unclear is whether female and male researchers in science, technology, engineering, and mathematical (STEM) disciplines differ in their collaboration propensity. Here, we report on an empirical analysis of the complete publication records of 3,980 faculty members in six STEM disciplines at select U.S. research universities. We find that female faculty have significantly fewer distinct co-authors over their careers than males, but that this difference can be fully accounted for by females’ lower publication rate and shorter career lengths. Next, we find that female scientists have a lower probability of repeating previous co-authors than males, an intriguing result because prior research shows that teams involving new collaborations produce work with higher impact. Finally, we find evidence for gender segregation in some sub-disciplines in molecular biology, in particular in genomics where we find female faculty to be clearly under-represented.

Chaos, Solitons & Fractals 91, 679 (2016)

Complexity MeasureTwo-dimensional Patterns The aim of this paper is to further explore the usefulness of the two-dimensional complexity-entropy causality plane as a texture image descriptor. A multiscale generalization is introduced in order to distinguish between different roughness features of images at small and large spatial scales. Numerically generated two-dimensional structures are initially considered for illustrating basic concepts in a controlled framework. Then, more realistic situations are studied. Obtained results allow us to confirm that intrinsic spatial correlations of images are successfully unveiled by implementing this multiscale symbolic information-theory approach. Consequently, we conclude that the proposed representation space is a versatile and practical tool for identifying, characterizing and discriminating image textures.

EPL, 114 (2016) 59002

Cracking NoiseData Analysis Statistical similarities between earthquakes and other systems that emit cracking noises have been explored in diverse contexts, ranging from materials science to financial and social systems. Such analogies give promise of a unified and universal theory for describing the complex responses of those systems. There are, however, very few attempts to simultaneously characterize the most fundamental seismic laws in such systems. Here we present a complete description of the Gutenberg-Richter law, the recurrence times, Omori’s law, the productivity law, and Bath’s law for the acoustic emissions that happen in the relaxation process of uncrumpling thin plastic sheets. Our results show that these laws also appear in this phenomenon, but (for most cases) with different parameters from those reported for earthquakes and fracture experiments. This study thus contributes to elucidate the parallel between seismic laws and cracking noises in uncrumpling processes, revealing striking qualitative similarities but also showing that these processes display unique features.

PLoS ONE 11, e0152440 (2016)

Complex SystemsNBA The idea that the success rate of a team increases when playing home is broadly accepted and documented for a wide variety of sports. Investigations on the so-called “home advantage phenomenon” date back to the 70’s and ever since has attracted the attention of scholars and sport enthusiasts. These studies have been mainly focused on identifying the phenomenon and trying to correlate it with external factors such as crowd noise and referee bias. Much less is known about the effects of home advantage in the “microscopic” dynamics of the game (within the game) or possible team-specific and evolving features of this phenomenon. Here we present a detailed study of these previous features in the National Basketball Association (NBA). By analyzing play-by-play events of more than sixteen thousand games that span thirteen NBA seasons, we have found that home advantage affects the microscopic dynamics of the game by increasing the scoring rates and decreasing the time intervals between scores of teams playing home. We verified that these two features are different among the NBA teams, for instance, the scoring rate of the Cleveland Cavaliers team is increased ≈0.16 points per minute (on average the seasons 2004–05 to 2013–14) when playing home, whereas for the New Jersey Nets (now the Brooklyn Nets) this rate increases in only ≈0.04 points per minute. We further observed that these microscopic features have evolved over time in a non-trivial manner when analyzing the results team-by-team. However, after averaging over all teams some regularities emerge; in particular, we noticed that the average differences in the scoring rates and in the characteristic times (related to the time intervals between scores) have slightly decreased over time, suggesting a weakening of the phenomenon. This study thus adds evidence of the home advantage phenomenon and contributes to a deeper understanding of this effect over the course of games.

PLoS ONE 11, e0152092 (2016)

Anomalous DiffusionDiffusion We report on a diffusive analysis of the motion of flagellate protozoa species. These parasites are the etiological agents of neglected tropical diseases: leishmaniasis caused by Leishmania amazonensis and Leishmania braziliensis, African sleeping sickness caused by Trypanosoma brucei, and Chagas disease caused by Trypanosoma cruzi. By tracking the positions of these parasites and evaluating the variance related to the radial positions, we find that their motions are characterized by a short-time transient superdiffusive behavior. Also, the probability distributions of the radial positions are self-similar and can be approximated by a stretched Gaussian distribution. We further investigate the probability distributions of the radial velocities of individual trajectories. Among several candidates, we find that the generalized gamma distribution shows a good agreement with these distributions. The velocity time series have long-range correlations, displaying a strong persistent behavior (Hurst exponents close to one). The prevalence of “universal” patterns across all analyzed species indicates that similar mechanisms may be ruling the motion of these parasites, despite their differences in morphological traits. In addition, further analysis of these patterns could become a useful tool for investigating the activity of new candidate drugs against these and others neglected tropical diseases.

PLoS ONE 11, e0149546 (2016)

CrimeScaling LawsUrban IndicatorsUrban Metrics Urban population scaling of resource use, creativity metrics, and human behaviors has been widely studied. These studies have not looked in detail at the full range of human environments which represent a continuum from the most rural to heavily urban. We examined monthly police crime reports and property transaction values across all 573 Parliamentary Constituencies in England and Wales, finding that scaling models based on population density provided a far superior framework to traditional population scaling. We found four types of scaling: i) non-urban scaling in which a single power law explained the relationship between the metrics and population density from the most rural to heavily urban environments, ii) accelerated scaling in which high population density was associated with an increase in the power-law exponent, iii) inhibited scaling where the urban environment resulted in a reduction in the power-law exponent but remained positive, and iv) collapsed scaling where transition to the high density environment resulted in a negative scaling exponent. Urban scaling transitions, when observed, took place universally between 10 and 70 people per hectare. This study significantly refines our understanding of urban scaling, making clear that some of what has been previously ascribed to urban environments may simply be the high density portion of non-urban scaling. It also makes clear that some metrics undergo specific transitions in urban environments and these transitions can include negative scaling exponents indicative of collapse. This study gives promise of far more sophisticated scale adjusted metrics and indicates that studies of urban scaling represent a high density subsection of overall scaling relationships which continue into rural environments.

Physica A 458, 9 (2016)

Anomalous Diffusion We investigate the behavior for a set of fractional reaction–diffusion equations that extend the usual ones by the presence of spatial fractional derivatives of distributed order in the diffusive term. These equations are coupled via the reaction terms which may represent reversible or irreversible processes. For these equations, we find exact solutions and show that the spreading of the distributions is asymptotically governed by the same the long-tailed distribution. Furthermore, we observe that the coupling introduced by reaction terms creates an interplay between different diffusive regimes leading us to a rich class of behaviors related to anomalous diffusion.

Physica A 444, 1003 (2016)

Complex NetworksComplex SystemsData Analysis Physica A 443, 32 (2016)

Anomalous DiffusionDiffusion We investigate a sorption process where one substance spreads out through another having possibility of chemical reaction between them. So as to describe this process, we have considered the bulk dynamics governed by a fractional diffusion equation, where the reaction term may describe an irreversible or a reversible process. This reaction term represents a generalization of the first order kinetic equation taking memory effects into account. The analytical solutions for the mean square displacement, survival probability and probability density of the particles we have obtained show a rich class of behaviors connected to anomalous diffusion.

PLoS ONE 10, e0134862 (2015)

Complex SystemsCrimeUrban IndicatorsUrban Metrics More than a half of world population is now living in cities and this number is expected to be two-thirds by 2050. Fostered by the relevancy of a scientific characterization of cities and for the availability of an unprecedented amount of data, academics have recently immersed in this topic and one of the most striking and universal finding was the discovery of robust allometric scaling laws between several urban indicators and the population size. Despite that, most governmental reports and several academic works still ignore these nonlinearities by often analyzing the raw or the per capita value of urban indicators, a practice that actually makes the urban metrics biased towards small or large cities depending on whether we have super or sublinear allometries. By following the ideas of Bettencourt et al. [PLoS ONE 5 (2010) e13541], we account for this bias by evaluating the difference between the actual value of an urban indicator and the value expected by the allometry with the population size. We show that this scale-adjusted metric provides a more appropriate/informative summary of the evolution of urban indicators and reveals patterns that do not appear in the evolution of per capita values of indicators obtained from Brazilian cities. We also show that these scale-adjusted metrics are strongly correlated with their past values by a linear correspondence and that they also display crosscorrelations among themselves. Simple linear models account for 31%-97% of the observed variance in data and correctly reproduce the average of the scale-adjusted metric when grouping the cities in above and below the allometric laws. We further employ these models to forecast future values of urban indicators and, by visualizing the predicted changes, we verify the emergence of spatial clusters characterized by regions of the Brazilian territory where we expect an increase or a decrease in the values of urban indicators.

EPL 111, 18002 (2015)

Complex SystemsCrimeUrban IndicatorsUrban Metrics The spatial dynamics of criminal activities has been recently studied through statistical physics methods; however, models and results have been focused on local scales (city level) and much less is known about these patterns at larger scales such as at a country level. Here we report on a characterization of the spatial dynamics of the homicide crimes along the Brazilian territory using data from all cities (~5000) in a period of more than thirty years. Our results show that the spatial correlation function in the per capita homicides decays exponentially with the distance between cities and that the characteristic correlation length displays an acute increasing trend in the latest years. We also investigate the formation of spatial clusters of cities via a percolation-like analysis, where clustering of cities and a phase transition-like behavior describing the size of the largest cluster as a function of a homicide threshold are observed. This transition-like behavior presents evolutive features characterized by an increasing in the homicide threshold (where the transitions occur) and by a decreasing in the transition magnitudes (length of the jumps in the cluster size). We believe that our work sheds new lights on the spatial patterns of criminal activities at large scales, which may contribute for better political decisions and resources allocation as well as opens new possibilities for modeling criminal activities by setting up fundamental empirical patterns at large scales.

Phys. Rev. Lett. 115, 025503 (2015)

Cracking NoiseEarthquakes Journal of Electroanalytical Chemistry 746 (2015) 25–30

Anomalous DiffusionElectrical Response Physica A 429, 35 (2015)

Generalized Schrödinger Soft Matter 11, 1658 (2015).

Anomalous Diffusion New J. Phys. 16, 093050 (2014).

Anomalous DiffusionComb ModelComplex Systems The comb model is a simplified description for anomalous diffusion under geometric constraints. It represents particles spreading out in a two-dimensional space where the motions in the x-direction are allowed only when the y coordinate of the particle is zero. Here, we propose an extension for the comb model via Langevin-like equations driven by fractional Gaussian noises (long-range correlated). By carrying out computer simulations, we show that the correlations in the y−direction affect the diffusive behavior in the x−direction in a non-trivial fashion, resulting in a quite rich diffusive scenario characterized by usual, superdiffusive or subdiffusive scaling of second moment in the x−direction. We further show that the long-range correlations affect the probability distribution of the particle positions in the x−direction, making their tails longer when noise in the y−direction is persistent and shorter for anti- persistent noise. Our model thus combines and allows the study/analysis of the interplay between different mechanisms of anomalous diffusion (geometric constraints and long-range correlations) and may find direct applications for describing diffusion in complex systems such as living cells.

J. Stat. Mech. P08019 (2014).

Anomalous Diffusion We investigate a system governed by a fractional diffusion equation with an integro-differential boundary condition on the surface. This condition can be connected with several processes such as adsorption and/ or desorption or chemical reactions due to the presence of active sites on the surface. The solutions are obtained by using the Green function approach and show a rich class of behaviors, which can be related to anomalous diffusion.

Physica A 409, 175 (2014).

Complex SystemsCrimeData AnalysisScaling LawsUrban Metrics We report on the existing connection between power-law distributions and allometries. As it was first reported in Gomez-Lievano et al. (2012) for the relationship between homicides and population, when these urban indicators present asymptotic power-law distributions, they can also display specific allometries among themselves. Here, we present an extensive characterization of this connection when considering all possible pairs of relationships from twelve urban indicators of Brazilian cities (such as child labor, illiteracy, income, sanitation and unemployment). Our analysis reveals that all our urban indicators are asymptotically distributed as power laws and that the proposed connection also holds for our data when the allometric relationship displays enough correlations. We have also found that not all allometric relationships are independent and that they can be understood as a consequence of the allometric relationship between the urban indicator and the population size. We further show that the residuals fluctuations surrounding the allometries are characterized by an almost constant variance and log-normal distributions.

Physica A 410, 399 (2014).

Anomalous Diffusion The reaction process occurring on a solid surface where active sites are present is investigated. The phenomenon is described by a linear kinetic equation capable of accounting for memory effects in the adsorption–desorption and a first order reaction process. In order to broaden the formulation of the problem, the surface is in contact with a system defined in a half space where the dynamics is governed by a fractional diffusion equation, meaning, in principle, that the approach can be applied to complex systems such as biological fluids. Our results prove that the anomalous behavior has great importance on the reaction and, consequently, on the densities rates of particles at the surface and on the distribution of particles in the bulk. The results are particularly relevant for heterogeneous catalysis.

Sci. Rep. 4, 4773 (2014).

Complex SystemsData AnalysisWar Understanding the mechanisms and processes underlying the dynamics of collective violence is of considerable current interest. Recent studies indicated the presence of robust patterns characterizing the size and timing of violent events in human conflicts. Since the size and timing of violent events arises as the result of a dynamical process, we explore the possibility of unifying these observations. By analyzing available catalogs on violent events in Iraq (2003–2005), Afghanistan (2008–2010) and Northern Ireland (1969–2001), we show that the inter-event time distributions (calculated for a range of minimum sizes) obeys approximately a simple scaling law which holds for more than three orders of magnitude. This robust pattern suggests a hierarchical organization in size and time providing a unified picture of the dynamics of violent conflicts.

Int. J. of Electrochem. Sci. 9, 1892 (2014).

Electrical Response We investigate dilute solutions of different salts (KClO3, K2SO4, and CdCl2H2O) dissolved in Milli-Q deionized water in the context of the fractional diffusion equations and equivalent circuits. The experimental results show that in the low frequency limit the behavior of the impedance is suitable described in terms of the boundary conditons which can be connected to constant phase elements (CPE). In addition, they also indicate that salts with similar characteristics, such as the ionic potential for the negative ion, present essentially the same frequency dependence of the impedance in the low frequency limit.

EPL 104, 69001 (2013).

Complex SystemsData AnalysisLightning We report on a statistical analysis of the lightning activity rates in all Brazilian cities. We find out that the average of lightning activity rates exhibits a dependence on the latitude of the cities, displaying one peak around the Tropic of Capricorn and another one just before the Equator. We verify that the standard deviation of these rates is almost a constant function of the latitude and that the distribution of the fluctuations surrounding the average tendency is quite well described by a Gumbel distribution, which thus connects these rates to extreme processes. We also investigate the behavior of the lightning activity rates vs. the longitude of the cities. For this case, the average rates exhibit an approximate plateau for a wide range of longitude values, the standard deviation is an approximate constant function of longitude, and the fluctuations are described by a Laplace distribution. We further characterize the spatial correlation of the lightning activity rates between pairs of cities, where our results show that the spatial correlation function decays very slowly with the distance between the cities and that for intermediate distances the correlation exhibits an approximate logarithmic decay. Finally, we propose to model this last behavior within the framework of the Edwards-Wilkinson equation.

J. Stat. Mech. P09017 (2013).

Anomalous DiffusionComb Model We investigate the solutions, survival probability, and first passage time for a two-dimensional diffusive process subjected to the geometric constraints of a backbone structure. We consider this process governed by a fractional Fokker–Planck equation by taking into account the boundary conditions ρ(0, y; t) = ρ(∞, y; t) = 0, ρ(x, ±∞; t) = 0, and an arbitrary initial condition. Our results show an anomalous spreading and, consequently, a nonusual behavior for the survival probability and for the first passage time distribution that may be characterized by different regimes. In addition, depending on the choice of the parameters present in the fractional Fokker–Planck equation, the survival probability indicates that part of the system may be trapped in the branches of the backbone structure.

Phys. Rev. E 88, 024802 (2013).

Complex SystemsData AnalysisElectionsScaling Laws We report on a statistical analysis of the engagement in the electoral processes of all Brazilian cities by considering the number of party memberships and the number of candidates for mayor and councillor. By investigating the relationships between the number of party members and the population of voters, we have found that the functional forms of these relationships are well described by sublinear power laws (allometric scaling) surrounded by a multiplicative log-normal noise. We have observed that this pattern is quite similar to those we previously reported for the relationships between the number of candidates (mayor and councillor) and population of voters [Europhys. Lett. 96, 48001 (2011)], suggesting that similar universal laws may be ruling the engagement in the electoral processes. We also note that the power-law exponents display a clear hierarchy, where the more influential is the political position the smaller is the value of the exponent. We have also investigated the probability distributions of the number of candidates (mayor and councillor), party memberships, and voters. The results indicate that the most influential positions are characterized by distributions with very short tails, while less influential positions display an intermediate power-law decay before showing an exponential-like cutoff. We discuss the possibility that, in addition to the political power of the position, limitations in the number of available seats can also be connected with this changing of behavior. We further believe that our empirical findings point out to an under-representation effect, where the larger the city is, the larger are the obstacles for more individuals to become directly engaged in the electoral process.

PLoS One 8, e69580 (2013).

Complex SystemsCrimeData AnalysisUrban Metrics We report on a quantitative analysis of relationships between the number of homicides, population size and ten other urban metrics. By using data from Brazilian cities, we show that well-defined average scaling laws with the population size emerge when investigating the relations between population and number of homicides as well as population and urban metrics. We also show that the fluctuations around the scaling laws are log-normally distributed, which enabled us to model these scaling laws by a stochastic-like equation driven by a multiplicative and log-normally distributed noise. Because of the scaling laws, we argue that it is better to employ logarithms in order to describe the number of homicides in function of the urban metrics via regression analysis. In addition to the regression analysis, we propose an approach to correlate crime and urban metrics via the evaluation of the distance between the actual value of the number of homicides (as well as the value of the urban metrics) and the value that is expected by the scaling law with the population size. This approach has proved to be robust and useful for unveiling relationships/behaviors that were not properly carried out by the regression analysis, such as i) the non-explanatory potential of the elderly population when the number of homicides is much above or much below the scaling law, ii) the fact that unemployment has explanatory potential only when the number of homicides is considerably larger than the expected by the power law, and iii) a gender difference in number of homicides, where cities with female population below the scaling law are characterized by a number of homicides above the power law.

J. Math Phys. 54, 082107 (2013).

Fractional Schrödinger We investigate, for an arbitrary initial condition, the time dependent solutions for a fractional Schro ̈dinger equation in the presence of delta potentials by using the Green function approach. The solutions obtained show an anomalous spreading asymptotically characterized by a power-law behavior, which is governed by the order of the fractional spatial operator present in the Schro ̈dinger equation.

Phys. Rev. E 87, 054501 (2013).

Complex SystemsData AnalysisLiquid Crystal We report on the dynamical behavior of defects of strength s = ±1/2 in a lyotropic liquid crystal during the annihilation process. By following their positions using time-resolved polarizing microscopy technique, we present statistically significant evidence that the relative velocity between defect pairs is Gaussian distributed, antipersistent, and long-range correlated. We further show that simulations of the Lebwohl-Lasher model reproduce quite well our experimental findings.

Physica A 392, 2676 (2013).

Complex SystemsCrimeData AnalysisScaling Laws The increasing number of crimes in areas with large concentrations of people have made cities one of the main sources of violence. Understanding characteristics of how crime rate expands and its relations with the cities size goes beyond an academic question, being a central issue for contemporary society. Here, we characterize and analyze quantitative aspects of murders in the period from 1980 to 2009 in Brazilian cities. We find that the distribution of the annual, biannual and triannual logarithmic homicide growth rates exhibit the same functional form for distinct scales, that is, a scale invariant behavior. We also identify asymptotic power-law decay relations between the standard deviations of these three growth rates and the initial size. Further, we discuss similarities with complex organizations.

PLoS One 8, e54165 (2013).

ChessComplex SystemsData AnalysisLearning The complexity of chess matches has attracted broad interest since its invention. This complexity and the availability of large number of recorded matches make chess an ideal model systems for the study of population-level learning of a complex system. We systematically investigate the move-by-move dynamics of the white player’s advantage from over seventy thousand high level chess matches spanning over 150 years. We find that the average advantage of the white player is positive and that it has been increasing over time. Currently, the average advantage of the white player is~0.17 pawns but it is exponentially approaching a value of 0.23 pawns with a characteristic time scale of 67 years. We also study the diffusion of the move dependence of the white player’s advantage and find that it is non-Gaussian, has long-ranged anti-correlations and that after an initial period with no diffusion it becomes super-diffusive. We find that the duration of the non-diffusive period, corresponding to the opening stage of a match, is increasing in length and exponentially approaching a value of 15.6 moves with a characteristic time scale of 130 years. We interpret these two trends as a resulting from learning of the features of the game. Additionally, we find that the exponent a characterizing the super-diffusive regime is increasing toward a value of 1.9, close to the ballistic regime. We suggest that this trend is due to the increased broadening of the range of abilities of chess players participating in major tournaments.

Phys. Rev. E 87, 012121 (2013).

Anomalous Diffusion The effects of an external force on a diffusive process subjected to a backbone structure are investigated by considering the system governed by a Fokker-Planck equation with drift terms. Our results show an anomalous spreading which may present different diffusive regimes connected to anomalous diffusion and stationary states.

Int. J. of Electrochem. Sci. 8, 2849 (2013).

Electrical Response We analyze the electrical response obtained in the framework of a model in which the diffusion of mobile ions in the bulk is governed by a fractional diffusion equation of distributed order subjected to integro-differential boundary conditions. The analysis is carried out by supposing that the positive and negative ions have different mobility and that the electric potential profile across the sample satisfies the Poisson’s equation. In addition, we also compare the analytical results with experimental data obtained from ionic solutions of a salt dissolved in water, reveling a good agreement and evidencing that the dynamics of the ions can be related to different diffusive processes and, consequently, to anomalous diffusion.

Phys. Rev. E 86, 022102 (2012).

Complex SystemsCricketData AnalysisHot Hands We investigate the time evolution of the scores of the second most popular sport in the world: the game of cricket. By analyzing, event by event, the scores of more than 2000 matches, we point out that the score dynamics is an anomalous diffusive process. Our analysis reveals that the variance of the process is described by a power-law dependence with a superdiffusive exponent, that the scores are statistically self-similar following a universal Gaussian distribution, and that there are long-range correlations in the score evolution. We employ a generalized Langevin equation with a power-law correlated noise that describes all the empirical findings very well. These observations suggest that competition among agents may be a mechanism leading to anomalous diffusion and long-range correlation.

Applied Mathematics and Computation 219, 2313 (2012).

Fractional Schrödinger The spatial and time dependent solutions of the Schrödinger equation incorporating the fractional time derivative of distributed order and extending the spatial operator to nonin- teger dimensions are investigated. They are obtained by using the Green function approach in two situations: the free case and in the presence of a harmonic potential. The results obtained show an anomalous spreading of the wave packet which may be related to an anomalous diffusion process.

PLoS One 7, e40689 (2012).

Complexity MeasureEntropyTwo-dimensional Patterns Complexity measures are essential to understand complex systems and there are numerous definitions to analyze one- dimensional data. However, extensions of these approaches to two or higher-dimensional data, such as images, are much less common. Here, we reduce this gap by applying the ideas of the permutation entropy combined with a relative entropic index. We build up a numerical procedure that can be easily implemented to evaluate the complexity of two or higher- dimensional patterns. We work out this method in different scenarios where numerical experiments and empirical data were taken into account. Specifically, we have applied the method to i) fractal landscapes generated numerically where we compare our measures with the Hurst exponent; ii) liquid crystal textures where nematic-isotropic-nematic phase transitions were properly identified; iii) 12 characteristic textures of liquid crystals where the different values show that the method can distinguish different phases; iv) and Ising surfaces where our method identified the critical temperature and also proved to be stable.

Phys. Rev. E 85, 011147 (2012).

Anomalous DiffusionLangevin Equation We investigate a generalized Langevin equation (GLE) in the presence of an additive noise characterized by the mixture of the usual white noise and an arbitrary one. This scenario lead us to a wide class of diffusive processes, in particular the ones whose noise correlation functions are governed by power laws, exponentials, and Mittag-Leffler functions. The results show the presence of different diffusive regimes related to the spreading of the system. In addition, we obtain a fractional diffusionlike equation from the GLE, confirming the results for long time.

Nonlinear Anal.: Real World Appl. 13, 1955 (2012).

Anomalous Diffusion We investigate a fractional diffusion equation with a nonlocal reaction term by using the Green function approach. We also consider a modified spatial operator in order to cover situations characterized by a noninteger dimension. The results show a nonusual spreading of the initial condition which can be connected to a rich class of anomalous diffusive processes.

Physica A 391, 2421 (2012).

Complex SystemsData AnalysisEntropyMusic Nowadays we are often faced with huge databases resulting from the rapid growth of data storage technologies. This is particularly true when dealing with music databases. In this context, it is essential to have techniques and tools able to discriminate properties from these massive sets. In this work, we report on a statistical analysis of more than ten thousand songs aiming to obtain a complexity hierarchy. Our approach is based on the estimation of the permutation entropy combined with an intensive complexity measure, building up the complexity–entropy causality plane. The results obtained indicate that this representation space is very promising to discriminate songs as well as to allow a relative quantitative comparison among songs. Additionally, we believe that the here-reported method may be applied in practical situations since it is simple, robust and has a fast numerical implementation.

Acta Sci.-Technol. 34, 201 (2012).

Anomalous DiffusionCTRW We investigate how it is possible to obtain different diffusive regimes from the Continuous Time Random Walk approach performing suitable changes for the waiting time and jumping distributions in order to get two or more regimes for the same diffusive process. We also obtain diffusion- like equations related to these processes and investigate the connection of the results with anomalous diffusion.

Phys. Rev. E 84, 041128 (2011).

Anomalous DiffusionElectrical Response We investigate the electrical response of Milli-Q deionized water by using a fractional diffusion equation of distributed order with the interfaces (i.e., the boundary conditions at the electrodes limiting the sample) governed by integro-differential equations. We also consider that the positive and negative ions have the same mobility and that the electric potential profile across the sample satisfies Poisson’s equation. In addition, the good agreement between the experimental data and this approach evidences the presence of anomalous diffusion due to the surface effects in this system.

EPL 96, 48001 (2011).

Complex SystemsData AnalysisElectionsScaling Laws Nowadays there is an increasing interest of physicists in finding regularities related to social phenomena. This interest is clearly motivated by applications that a statistical mechanical description of the human behavior may have in our society. By using this framework, we address this work to cover an open question related to elections: the choice of elections candidates (candidature process). Our analysis reveals that, apart from the social motivations, this system displays features of traditional out-of-equilibrium physical phenomena such as scale-free statistics and universality. Basically, we found a non-linear (power law) mean correspondence between the number of candidates and the size of the electorate (number of voters), and also that this choice has a multiplicative underlying process (lognormal behavior). The universality of our findings is supported by data from 16 elections from 5 countries. In addition, we show that aspects of scale-free network can be connected to this universal behavior.

J. Math Phys. 52, 083301 (2011).

Anomalous Diffusion We obtain an exact form for the propagator of the Fokker-Planck equation ∂tρ = ∂x (D(x)∂x ρ) −∂x (F(x, t)ρ), with D(x) = D|x|−η in presence of the external force F(x, t) = −k(t)x + (K/x) |x|−η. Using the results found here, we also investigate the mean square displacement, survival probability, and first passage time distribution. In addition, we discuss the connection of these results with anomalous diffusion phenomena.

Chem. Eng. J. 172, 1083 (2011).

Anomalous Diffusion We revisit the problem of diffusion in a porous catalyst by incorporating in the diffusion equation fractional time derivatives and a spatial dependent diffusion coefficient in order to extend the usual description to situations which have an unusual behavior. In our analysis, we also consider a nonlocal reaction term of linear order. We obtain exact solutions for the profile of substance in the porous catalyst in terms of the Green function approach. The results show an anomalous behavior of the concentration profile spreading which may be connected to anomalous diffusion.

Physica Scripta 83, 045007 (2011).

Anomalous DiffusionCTRWSymbolic Dynamics In this work, we investigate some statistical properties of symbolic sequences generated by a numerical procedure in which the symbols are repeated following the power-law probability density. In this analysis, we consider that the sum of n symbols represents the position of a particle in erratic movement. This approach reveals a rich diffusive scenario characterized by non-Gaussian distribution and, depending on the power-law exponent or the procedure used to build the walker, we may have superdiffusion, subdiffusion or usual diffusion. Additionally, we use the continuous-time random walk framework to compare the analytic results with the numerical data, thereby finding good agreement. Because of its simplicity and flexibility, this model can be a candidate for describing real systems governed by power-law probability densities.

PLoS One 6, e17823 (2011).

Complex SystemsData AnalysisInfluenza A We investigate the dynamics of the 2009 influenza A (H1N1/S-OIV) pandemic by analyzing data obtained from World Health Organization containing the total number of laboratory-confirmed cases of infections – by country – in a period of 69 days, from 26 April to 3 July, 2009. Specifically, we find evidence of exponential growth in the total number of confirmed cases and linear growth in the number of countries with confirmed cases. We also find that, i) at early stages, the cumulative distribution of cases among countries exhibits linear behavior on log-log scale, being well approximated by a power law decay; ii) for larger times, the cumulative distribution presents a systematic curvature on log-log scale, indicating a gradual change to lognormal behavior. Finally, we compare these empirical findings with the predictions of a simple stochastic model. Our results could help to select more realistic models of the dynamics of influenza-type pandemics.

Chaos Solitons and Fractals 44, 178 (2011).

Boiling WaterComplex Systems We investigate the dynamics of many interacting bubbles in boiling water by using a laser scattering experiment. Specifically, we analyze the temporal variations of a laser intensity signal which passed through a sample of boiling water. Our empirical results indicate that the return interval distribution of the laser signal does not follow an exponential distribution; contrariwise, a heavy-tailed distribution has been found. Additionally, we compare the experimental results with those obtained from a minimalist phenomenological model, finding a good agreement.

J. Stat. Mech. P02022 (2011).

Anomalous DiffusionComb Model New J. Phys. 13, 023028 (2011).

Complex SystemsData AnalysisHuman Dynamics We report on a statistical analysis of the people agglomeration soundscape. Specifically, we investigate the normalized sound amplitudes and intensities that emerge from human collective meetings. Our findings support the existence of non-trivial dynamics characterized by heavy tail distributions in the sound amplitudes, long-range correlations in the sound intensity and non-exponential distributions in the return interval distributions. Additionally, motivated by the time-dependent behavior present in the volatility/variance series, we compare the observational data with those obtained from a minimalist autoregressive stochastic model, namely the generalized autoregressive conditional heteroskedastic process (the GARCH process), and find that there is good agreement.

Phys. Rev. E 83, 017101 (2011).

Complex SystemsData AnalysisMusic We report a statistical analysis of more than eight thousand songs. Specifically, we investigated the probability distribution of the normalized sound amplitudes. Our findings suggest a universal form of distribution that agrees well with a one-parameter stretched Gaussian. We also argue that this parameter can give information on music complexity, and consequently it helps classify songs as well as music genres. Additionally, we present statistical evidence that correlation aspects of the songs are directly related to the non-Gaussian nature of their sound amplitude distributions.

EPL 92, 29001 (2010).

Data AnalysisEarthquakesPlastic Sheets We report remarkable similarities in the output signal of two distinct out-of-equilibrium physical systems – earthquakes and the intermittent acoustic noise emitted by crumpled plastic sheets, i.e. Biaxially Oriented Polypropylene (BOPP) films. We show that both signals share several statistical properties including the distribution of energy, distribution of energy increments for distinct time scales, distribution of return intervals and correlations in the magnitude and sign of energy increments. This analogy is consistent with the concept of universality in complex systems and could provide some insight on the mechanisms behind the complex behavior of earthquakes.

J. Math Phys. 51, 092102 (2010).

CTRWFractional Schrödinger We argue that the continuous-time random walk approach may be a useful guide to extend the Schrödinger equation in order to incorporate nonlocal effects, avoiding the inconsistencies raised by Jeng et al. [J. Math. Phys. 51, 062102 (2010)]. As an application, we work out a free particle in a half space, obtaining the time depen- dent solution by considering an arbitrary initial condition.

Phys. Lett. A 374, 4193 (2010).

Anomalous Diffusion Solutions for a non-Markovian diffusion equation are investigated. For this equation, we consider a spatial and time dependent diffusion coefficient and the presence of an absorbent term. The solutions exhibit an anomalous behavior which may be related to the solutions of fractional diffusion equations and anomalous diffusion.

Eur. Phys. J. B 75, 327 (2010).

Complex SystemsData AnalysisSoccer A random walk-like model is considered to discuss statistical aspects of tournaments. The model is applied to soccer leagues with emphasis on the scores. This competitive system was computationally simulated and the results are compared with empirical data from the English, the German and the Spanish leagues and showed a good agreement with them. The present approach enabled us to characterize a diffusion where the scores are not normally distributed, having a short and asymmetric tail extending towards more positive values. We argue that this non-Gaussian behavior is related with the difference between the teams and with the asymmetry of the scores system. In addition, we compared two tournament systems: the all-play-all and the elimination tournaments.

We address this work to investigate symbolic sequences with long-range correlations by using computational simulation. We analyze sequences with two, three and four symbols that could be repeated l times, with the probability distribution p(l) ∝ 1/lμ. For these sequences, we verified that the usual entropy increases more slowly when the symbols are correlated and the Tsallis entropy exhibits, for a suitable choice of q, a linear behavior. We also study the chain as a random walk-like process and observe a nonusual diffusive behavior depending on the values of the parameter μ.

## [39]

## We need more empirical investigations and model validation for a better understanding of crime - Comment on 'Statistical physics of crime: A review' by M.R. D'Orsogna and M. Perc.

Since the seminal works of Wilson and Kelling [1] in 1982, the “broken windows theory” seems to have been widely accepted among the criminologists and, in fact, empirical findings actually point out that criminals tend to return to previously visited locations. Crime has always been part of the urban society’s agenda and has also attracted the attention of scholars from social sciences ever since. Furthermore, over the past six decades the world has experienced a quick and notorious urbanization process: by the eighties the urban population was about 40% of total population, and today more than half (54%) of the world population is urban [2]. The urbanization has brought us many benefits such as better working opportunities and health care, but has also created several problems such as pollution and a considerable rise in the criminal activities. In this context of urban problems, crime deserves a special attention because there is a huge necessity of empirical and mathematical (modeling) investigations which, apart from the natural academic interest, may find direct implications for the organization of our society by improving political decisions and resource allocation.

Despite being a naturally interdisciplinary topic, the idea of a physicist studying crime may still cause some surprise (despite the fact that physicists have investigated, more than ever, several systems very far from the traditional domain of physics), but the review by D’Orsogna and Perc [3] shows us that several collective patterns related to crimes are analogous to those exhibited by classical physical systems such as the reaction–diffusion equations, which model the evolution of chemicals under chemical reactions and diffusion, but also describe the evolution of crime hotspots. D’Orsogna and Perc bring us a concise and general view of the recent applications of mathematical methods for modeling crime related problems. The review covers the modeling of crime hotspots by generalized reaction–diffusion equations and by self-exciting point process; presents an overview of the evolutionary game theory for addressing crime as a social dilemma; illustrates the use of network tools for understanding criminal organizations; and, by combining these tools with random walks methods, demonstrates how it is possible to infer the network topology of street gangs. Finally, within a more sociological view, the authors discuss the role of punishment for rehabilitation and to prevent recidivism.

What I found special in this review is that the authors do not only stay in the “physicists’ comfort zone”, that is, too focused on models and proprieties that resemble those of phase transitions, which are beautiful for theoretical physicists but much less interesting for creating methods and tools to help us prevent and understand crimes from a more social perspective. D’Orsogna and Perc drive us towards an empirical and applied approach by reviewing and discussing several sociological concepts of crime in connection with statistical models. They also present specific examples of real-world applications such as the case of the Los Angeles Police Department. This police department employed earthquake-like models aiming to prevent crime by sending police patrols to geographical areas where models indicated that crimes were more likely to occur. Another striking example is the inference of the network topology of street gangs via agent-based simulations, in which it is quite impressive to see how this simple model agrees with the empirical data.

I totally agree with the authors when they mention that methods from statistical physics can provide direct sociological implications for crime-related problems. But, in order to reach these implications, physicists need to move further away from the “comfort zone” I previously mentioned. Contrary to what occurs, for example, in materials science, there is no “social engineer” who will be responsible for implementing models and tools that we need for a better control over the criminal activities. It seems that, although this task requires skills from both science and computing (a rare combination, even today [4]), statistical physicists may represent the ideal professional to take on this challenge.

## References

[1] J.Q. Wilson, G.L. Kelling, Broken windows, Atl Mon, 249 (1982), pp. 29–38

[2] United Nations, Department of Economic and Social Affairs, Population Division, 2014. World urbanization prospects: the 2014 revision, highlights (ST/ESA/SER.A/352).

[3] M.R. D’Orsogna, M. Perc, Statistical physics of crime: a review, Phys Life Rev (2015) http://dx.doi.org/10.1016/j.plrev.2014.11.001 [ in this issue]

[4] C.A. Mattmann, Computing: a vision for data science, Nature, 493 (2012), pp. 473–475